Paul A Hohenlohe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6040053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stacks: an analysis tool set for population genomics. Molecular Ecology, 2013, 22, 3124-3140.	2.0	3,077
2	Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 2011, 12, 499-510.	7.7	2,198
3	<i>Stacks</i> : Building and Genotyping Loci <i>De Novo</i> From Short-Read Sequences. G3: Genes, Genomes, Genetics, 2011, 1, 171-182.	0.8	1,643
4	Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced RAD Tags. PLoS Genetics, 2010, 6, e1000862.	1.5	1,219
5	Genomics and the future of conservation genetics. Nature Reviews Genetics, 2010, 11, 697-709.	7.7	1,181
6	Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 2016, 17, 81-92.	7.7	1,169
7	Genomics and the origin of species. Nature Reviews Genetics, 2014, 15, 176-192.	7.7	850
8	Harnessing genomics for delineating conservation units. Trends in Ecology and Evolution, 2012, 27, 489-496.	4.2	767
9	Genotypingâ€byâ€sequencing in ecological and conservation genomics. Molecular Ecology, 2013, 22, 2841-2847.	2.0	469
10	ESTIMATING NONLINEAR SELECTION GRADIENTS USING QUADRATIC REGRESSION COEFFICIENTS: DOUBLE OR NOTHING?. Evolution; International Journal of Organic Evolution, 2008, 62, 2435-2440.	1.1	425
11	Resolving postglacial phylogeography using high-throughput sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16196-16200.	3.3	412
12	UNDERSTANDING THE EVOLUTION AND STABILITY OF THE G-MATRIX. Evolution; International Journal of Organic Evolution, 2008, 62, 2451-2461.	1.1	356
13	Nextâ€generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Molecular Ecology Resources, 2011, 11, 117-122.	2.2	323
14	SNP Discovery and Genotyping for Evolutionary Genetics Using RAD Sequencing. Methods in Molecular Biology, 2012, 772, 157-178.	0.4	311
15	Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biological Conservation, 2020, 248, 108654.	1.9	285
16	Rapid evolution of a native species following invasion by a congener. Science, 2014, 346, 463-466.	6.0	269
17	Population genomics for wildlife conservation and management. Molecular Ecology, 2021, 30, 62-82.	2.0	258
18	Multiple Sex-Associated Regions and a Putative Sex Chromosome in Zebrafish Revealed by RAD Mapping and Population Genomics. PLoS ONE, 2012, 7, e40701.	1.1	211

#	Article	IF	CITATIONS
19	Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 395-408.	1.8	190
20	Using Population Genomics to Detect Selection in Natural Populations: Key Concepts and Methodological Considerations. International Journal of Plant Sciences, 2010, 171, 1059-1071.	0.6	165
21	Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping pairedâ€end RAD sequencing. Molecular Ecology, 2013, 22, 3002-3013.	2.0	162
22	Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nature Communications, 2016, 7, 12684.	5.8	162
23	Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Molecular Ecology Resources, 2017, 17, 362-365.	2.2	156
24	Conservation genomics of natural and managed populations: building a conceptual and practical framework. Molecular Ecology, 2016, 25, 2967-2977.	2.0	141
25	Post-2020 goals overlook genetic diversity. Science, 2020, 367, 1083-1085.	6.0	132
26	Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Molecular Ecology, 2016, 25, 2176-2194.	2.0	114
27	DRIFT PROMOTES SPECIATION BY SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 2009, 63, 583-594.	1.1	96
28	Limits to gene flow in marine animals with planktonic larvae: models of Littorina species around Point Conception, California. Biological Journal of the Linnean Society, 2004, 82, 169-187.	0.7	91
29	MIPoD: A Hypothesisâ€Testing Framework for Microevolutionary Inference from Patterns of Divergence. American Naturalist, 2008, 171, 366-385.	1.0	84
30	Contemporary Demographic Reconstruction Methods Are Robust to Genome Assembly Quality: A Case Study in Tasmanian Devils. Molecular Biology and Evolution, 2019, 36, 2906-2921.	3.5	84
31	Population Genomics: Advancing Understanding of Nature. Population Genomics, 2018, , 3-79.	0.2	70
32	RAD sequencing yields a high success rate for westslope cutthroat and rainbow trout speciesâ€diagnostic SNP assays. Molecular Ecology Resources, 2012, 12, 653-660.	2.2	64
33	Population Genomic Analysis of Model and Nonmodel Organisms Using Sequenced RAD Tags. Methods in Molecular Biology, 2012, 888, 235-260.	0.4	56
34	Tradeâ€offs and utility of alternative RADseq methods: Reply to Puritz <i>et al</i> Molecular Ecology, 2014, 23, 5943-5946.	2.0	55
35	Conservation implications of limited genetic diversity and population structure in Tasmanian devils (Sarcophilus harrisii). Conservation Genetics, 2017, 18, 977-982.	0.8	50
36	Infection of the fittest: devil facial tumour disease has greatest effect on individuals with highest reproductive output. Ecology Letters, 2017, 20, 770-778.	3.0	50

#	Article	IF	CITATIONS
37	Largeâ€effect loci affect survival in Tasmanian devils (<i>Sarcophilus harrisii</i>) infected with a transmissible cancer. Molecular Ecology, 2018, 27, 4189-4199.	2.0	45
38	A bioinformatic pipeline for identifying informative SNP panels for parentage assignment from <scp>RAD</scp> seq data. Molecular Ecology Resources, 2018, 18, 1263-1281.	2.2	45
39	Cryptic Patterns of Speciation in Cryptic Primates: Microendemic Mouse Lemurs and the Multispecies Coalescent. Systematic Biology, 2021, 70, 203-218.	2.7	42
40	Dimensionality of mate choice, sexual isolation, and speciation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16583-16588.	3.3	41
41	Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer. Conservation Genetics, 2019, 20, 81-87.	0.8	41
42	Intercontinental genomic parallelism in multiple three-spined stickleback adaptive radiations. Nature Ecology and Evolution, 2021, 5, 251-261.	3.4	41
43	Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161380.	1.2	40
44	Mixed population genomics support for the central marginal hypothesis across the invasive range of the cane toad (<i>Rhinella marina</i>) in Australia. Molecular Ecology, 2016, 25, 4161-4176.	2.0	38
45	Tracing the rise of malignant cell lines: Distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils. Evolutionary Applications, 2019, 12, 1772-1780.	1.5	37
46	Genomics and introgression: Discovery and mapping of thousands of species-diagnostic SNPs using RAD sequencing. Environmental Epigenetics, 2015, 61, 146-154.	0.9	35
47	Individual and temporal variation in pathogen load predicts longâ€ŧerm impacts of an emerging infectious disease. Ecology, 2019, 100, e02613.	1.5	33
48	Population Genomic Analysis of North American Eastern Wolves (Canis lycaon) Supports Their Conservation Priority Status. Genes, 2018, 9, 606.	1.0	32
49	Effective population size remains a suitable, pragmatic indicator of genetic diversity for all species, including forest trees. Biological Conservation, 2021, 253, 108906.	1.9	32
50	Developmental dissociation in morphological evolution of the stickleback opercle. Evolution & Development, 2012, 14, 326-337.	1.1	30
51	The genomic basis of tumor regression in Tasmanian devils (Sarcophilus harrisii). Genome Biology and Evolution, 2018, 10, 3012-3025.	1.1	30
52	The ecology of an adaptive radiation of threeâ€spined stickleback from North Uist, Scotland. Molecular Ecology, 2016, 25, 4319-4336.	2.0	29
53	Population Genomics Provides Key Insights in Ecology and Evolution. Population Genomics, 2018, , 483-510.	0.2	28
54	Rate of intersexual interactions affects injury likelihood in Tasmanian devil contact networks. Behavioral Ecology, 2019, 30, 1087-1095.	1.0	25

#	Article	IF	CITATIONS
55	A transmissible cancer shifts from emergence to endemism in Tasmanian devils. Science, 2020, 370, .	6.0	24
56	Comment on "Whole-genome sequence analysis shows two endemic species of North American wolf are admixtures of the coyote and gray wolf― Science Advances, 2017, 3, e1602250.	4.7	22
57	Spontaneous Tumor Regression in Tasmanian Devils Associated with <i>RASL11A</i> Activation. Genetics, 2020, 215, 1143-1152.	1.2	22
58	Trait dimensionality explains widespread variation in local adaptation. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141570.	1.2	21
59	High genomic diversity and candidate genes under selection associated with range expansion in eastern coyote (<i>Canis latrans</i>) populations. Ecology and Evolution, 2018, 8, 12641-12655.	0.8	21
60	Wireworm (Coleoptera: Elateridae) genomic analysis reveals putative cryptic species, population structure, and adaptation to pest control. Communications Biology, 2020, 3, 489.	2.0	21
61	Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107.	2.0	19
62	The devil is in the details: Genomics of transmissible cancers in Tasmanian devils. PLoS Pathogens, 2018, 14, e1007098.	2.1	18
63	Authors' Reply to Letter to the Editor: Continued improvement to genetic diversity indicator for CBD. Conservation Genetics, 2021, 22, 533-536.	0.8	18
64	Disease swamps molecular signatures of geneticâ€environmental associations to abiotic factors in Tasmanian devil (<i>Sarcophilus harrisii</i>) populations. Evolution; International Journal of Organic Evolution, 2020, 74, 1392-1408.	1.1	18
65	Infectious disease and sickness behaviour: tumour progression affects interaction patterns and social network structure in wild Tasmanian devils. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202454.	1.2	16
66	Life history of <i>Littorina scutulata</i> and <i>L. plena</i> , sibling gastropod species with planktotrophic larvae. Invertebrate Biology, 2002, 121, 25-37.	0.3	15
67	GENETIC REGULATORY NETWORK MOTIFS CONSTRAIN ADAPTATION THROUGH CURVATURE IN THE LANDSCAPE OF MUTATIONAL (CO)VARIANCE. Evolution; International Journal of Organic Evolution, 2014, 68, 950-964.	1.1	14
68	Natural re-colonization and admixture of wolves (Canis lupus) in the US Pacific Northwest: challenges for the protection and management of rare and endangered taxa. Heredity, 2019, 122, 133-149.	1.2	13
69	Darwin, the devil, and the management of transmissible cancers. Conservation Biology, 2021, 35, 748-751.	2.4	13
70	Comparative landscape genetics reveals differential effects of environment on host and pathogen genetic structure in Tasmanian devils (<i>Sarcophilus harrisii</i>) and their transmissible tumour. Molecular Ecology, 2020, 29, 3217-3233.	2.0	9
71	Contemporary and historical selection in Tasmanian devils (<i>Sarcophilus harrisii</i>) support novel, polygenic response to transmissible cancer. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210577.	1.2	9
72	Full Mitochondrial Genome Sequence of the Sugar Beet Wireworm <i>Limonius californicus</i> (Coleoptera: Elateridae), a Common Agricultural Pest. Genome Announcements, 2016, 4, .	0.8	7

#	Article	IF	CITATIONS
73	The Population Genomics of Parallel Adaptation: Lessons from Threespine Stickleback. Population Genomics, 2019, , 249-276.	0.2	7
74	Wildlife Population Genomics: Applications and Approaches. Population Genomics, 2020, , 3-59.	0.2	7
75	Development and characterization of fourteen novel microsatellite markers for the chestnut short-tailed fruit bat (<i>Carollia castanea</i>), and cross-amplification to related species. PeerJ, 2016, 4, e2465.	0.9	7
76	Ecological genomics in full colour. Molecular Ecology, 2014, 23, 5129-5131.	2.0	6
77	Transcriptomics of Tasmanian Devil (Sarcophilus Harrisii) Ear Tissue Reveals Homogeneous Gene Expression Patterns across a Heterogeneous Landscape. Genes, 2019, 10, 801.	1.0	6
78	Spatial variation in gene expression of Tasmanian devil facial tumors despite minimal host transcriptomic response to infection. BMC Genomics, 2021, 22, 698.	1.2	6
79	Hybridization and range expansion in tamarisk beetles (<i>Diorhabda</i> spp.) introduced to North America for classical biological control. Evolutionary Applications, 2022, 15, 60-77.	1.5	6
80	The role of neutral and adaptive genomic variation in population diversification and speciation in two ground squirrel species of conservation concern. Molecular Ecology, 2021, 30, 4673-4694.	2.0	5
81	Emergence, transmission and evolution of an uncommon enemy: Tasmanian devil facial tumour disease. , 2019, , 321-341.		4
82	Considering all the evidence: a reply to Sefc and Koblmüller (2016). Biology Letters, 2016, 12, 20151009.	1.0	3
83	Population Genomics Training for the Next Generation of Conservation Geneticists: ConGen 2018 Workshop. Journal of Heredity, 2020, 111, 227-236.	1.0	3
84	Combining Harvest and Genetics to Estimate Reproduction in Wolves. Journal of Wildlife Management, 2020, 84, 492-504.	0.7	2
85	Population Genomics of Wildlife Cancer. Population Genomics, 2020, , 385-416.	0.2	2
86	Estimation of the strength of mate preference from mated pairs observed in the wild. Evolution; International Journal of Organic Evolution, 2022, 76, 29-41.	1.1	2
87	A Publish-Subscribe Model of Genetic Networks. PLoS ONE, 2008, 3, e3245.	1.1	1
88	Longâ€lived marine species may be resilient to environmental variability through a temporal portfolio effect. Ecology and Evolution, 2020, 10, 6435-6448.	0.8	1
89	Panmixia in spiders (<i>Mecaphesa celer</i> , Thomisidae) despite fragmented habitat at Craters of the Moon in Idaho. Ecological Entomology, 0, , .	1.1	0