List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6039963/publications.pdf Version: 2024-02-01

NODEEN EVANS

#	Article	IF	CITATIONS
1	Osmium Isotope Constraints on Ore Metal Recycling in Subduction Zones. Science, 1999, 286, 512-516.	6.0	301
2	Recycling of metal-fertilized lower continental crust: Origin of non-arc Au-rich porphyry deposits at cratonic edges. Geology, 2017, 45, 563-566.	2.0	145
3	Intracontinental Eocene-Oligocene Porphyry Cu Mineral Systems of Yunnan, Western Yangtze Craton, China: Compositional Characteristics, Sources, and Implications for Continental Collision Metallogeny. Economic Geology, 2013, 108, 1541-1576.	1.8	144
4	Application of Thermochronology to Hydrothermal Ore Deposits. Reviews in Mineralogy and Geochemistry, 2005, 58, 467-498.	2.2	130
5	Determination of Uranium and Thorium in Zircon, Apatite, and Fluorite: Application to Laser (U-Th)/He Thermochronology. Journal of Analytical Chemistry, 2005, 60, 1159-1165.	0.4	126
6	Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou Area, Anhui Province, Eastern China. American Mineralogist, 2014, 99, 303-317.	0.9	120
7	Re-anchoring the late Pleistocene tephrochronology of New Zealand based on concordant radiocarbon ages and combined 238U/230Th disequilibrium and (U–Th)/He zircon ages. Earth and Planetary Science Letters, 2012, 349-350, 240-250.	1.8	108
8	Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA. Mineralium Deposita, 2002, 37, 14-37.	1.7	107
9	Seeing is believing: Visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals. Science Advances, 2017, 3, e1601121.	4.7	101
10	Acigöl rhyolite field, Central Anatolia (part 1): high-resolution dating of eruption episodes and zircon growth rates. Contributions To Mineralogy and Petrology, 2011, 162, 1215-1231.	1.2	98
11	Strategies towards robust interpretations of in situ zircon Lu–Hf isotope analyses. Geoscience Frontiers, 2020, 11, 843-853.	4.3	97
12	Insight into zircon REE oxy-barometers: A lattice strain model perspective. Earth and Planetary Science Letters, 2019, 506, 87-96.	1.8	92
13	Evolution of the Singhbhum Craton and supracrustal provinces from age, isotopic and chemical constraints. Earth-Science Reviews, 2019, 193, 237-259.	4.0	89
14	Use of platinum-group elements for impactor identification: Terrestrial impact craters and Cretaceous-Tertiary boundary. Geochimica Et Cosmochimica Acta, 1993, 57, 3737-3748.	1.6	87
15	Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India. Contributions To Mineralogy and Petrology, 2014, 168, 1.	1.2	86
16	Zircon geochronology and geochemistry of the Xianghualing A-type granitic rocks: Insights into multi-stage Sn-polymetallic mineralization in South China. Lithos, 2018, 312-313, 1-20.	0.6	86
17	Baogutu: An example of reduced porphyry Cu deposit in western Junggar. Ore Geology Reviews, 2014, 56, 159-180.	1.1	85
18	Cretaceous magmatism and metallogeny in the Bangong–Nujiang metallogenic belt, central Tibet: Evidence from petrogeochemistry, zircon U–Pb ages, and Hf–O isotopic compositions. Gondwana Research, 2017, 41, 110-127.	3.0	82

#	Article	IF	CITATIONS
19	Evidence for melting mud in Earth's mantle from extreme oxygen isotope signatures in zircon. Geology, 2017, 45, 975-978.	2.0	81
20	The zircon â€~matrix effect': evidence for an ablation rate control on the accuracy of U–Pb age determinations by LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 2014, 29, 981-989.	1.6	77
21	Contrasting Granite Metallogeny through the Zircon Record: A Case Study from Myanmar. Scientific Reports, 2017, 7, 748.	1.6	72
22	In situ LA-(MC)-ICP-MS trace element and Nd isotopic compositions and genesis of polygenetic titanite from the Baogutu reduced porphyry Cu deposit, Western Junggar, NW China. Ore Geology Reviews, 2015, 65, 940-954.	1.1	71
23	Constraining longâ€ŧerm denudation and faulting history in intraplate regions by multisystem thermochronology: An example of the Sudetic Marginal Fault (Bohemian Massif, central Europe). Tectonics, 2012, 31, .	1.3	68
24	Mesozoic reactivation of the Beishan, southern Central Asian Orogenic Belt: Insights from low-temperature thermochronology. Gondwana Research, 2017, 43, 107-122.	3.0	67
25	Cenozoic uplift, exhumation and deformation in the north Kuqa Depression, China as constrained by (U–Th)/He thermochronometry. Tectonophysics, 2014, 630, 166-182.	0.9	65
26	Lawsonite geochemistry and stability – implication for trace element and water cycles in subduction zones. Journal of Metamorphic Geology, 2014, 32, 455-478.	1.6	64
27	Tectono-magmatic evolution of Late Jurassic to Early Cretaceous granitoids in the west central Lhasa subterrane, Tibet. Gondwana Research, 2016, 39, 386-400.	3.0	63
28	Geochemistry and geochronology of the Banxi Sb deposit: Implications for fluid origin and the evolution of Sb mineralization in central-western Hunan, South China. Gondwana Research, 2018, 55, 112-134.	3.0	63
29	Petrogenesis and thermal history of the Yulong porphyry copper deposit, Eastern Tibet: insights from U-Pb and U-Th/He dating, and zircon Hf isotope and trace element analysis. Mineralogy and Petrology, 2012, 105, 201-221.	0.4	57
30	Application of combined U-Th-disequilibrium/U-Pb and (U-Th)/He zircon dating to tephrochronology. Quaternary Geochronology, 2017, 40, 23-32.	0.6	57
31	Apatite and titanite from the Karrat Group, Greenland; implications for charting the thermal evolution of crust from the U-Pb geochronology of common Pb bearing phases. Precambrian Research, 2017, 300, 107-120.	1.2	56
32	Poikilitic Textures, Heteradcumulates and Zoned Orthopyroxenes in the Ntaka Ultramafic Complex, Tanzania: Implications for Crystallization Mechanisms of Oikocrysts. Journal of Petrology, 2016, 57, 1171-1198.	1.1	55
33	Tectonic controls on sediment provenance evolution in rift basins: Detrital zircon U–Pb and Hf isotope analysis from the Perth Basin, Western Australia. Gondwana Research, 2019, 66, 126-142.	3.0	55
34	The Fate of Magmatic Sulfides During Intrusion or Eruption, Bingham and Tintic Districts, Utah. Economic Geology, 2006, 101, 329-345.	1.8	54
35	Across-arc geochemical variation in the Jurassic magmatic zone, Southern Tibet: Implication for continental arc-related porphyry Cu Au mineralization. Chemical Geology, 2017, 451, 116-134.	1.4	54
36	Thermal history of the giant Qulong Cu–Mo deposit, Gangdese metallogenic belt, Tibet: Constraints on magmatic–hydrothermal evolution and exhumation. Gondwana Research, 2016, 36, 390-409.	3.0	52

#	Article	IF	CITATIONS
37	Physicochemical Processes in the Magma Chamber under the Black Mountain Porphyry Cu-Au Deposit, Philippines: Insights from Mineral Chemistry and Implications for Mineralization. Economic Geology, 2018, 113, 63-82.	1.8	52
38	Abiogenic Fischer–Tropsch synthesis of methane at the Baogutu reduced porphyry copper deposit, western Junggar, NW-China. Geochimica Et Cosmochimica Acta, 2014, 141, 179-198.	1.6	51
39	Grain size matters: Implications for element and isotopic mobility in titanite. Precambrian Research, 2016, 278, 283-302.	1.2	51
40	Ru/Ir ratios at the Cretaceous-Tertiary boundary: Implications for PGE source and fractionation within the ejecta cloud. Geochimica Et Cosmochimica Acta, 1993, 57, 3149-3158.	1.6	50
41	Magmatic process recorded in plagioclase at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China. Journal of Asian Earth Sciences, 2014, 82, 136-150.	1.0	50
42	Thermal-tectonic history of the Baogutu porphyry Cu deposit, West Junggar as constrained from zircon U–Pb, biotite Ar/Ar and zircon/apatite (U–Th)/He dating. Journal of Asian Earth Sciences, 2014, 79, 741-758.	1.0	50
43	Petrogenesis and tectonic setting of Triassic granitoids in the Qiangtang terrane, central Tibet: Evidence from U–Pb ages, petrochemistry and Sr–Nd–Hf isotopes. Journal of Asian Earth Sciences, 2015, 105, 443-455.	1.0	49
44	Numerical modeling of magmatic–hydrothermal systems constrained by U–Th–Pb–He time–temperature histories. Journal of Geochemical Exploration, 2010, 106, 90-109.	1.5	46
45	Thermochronological constraints on the long-term erosional history of the Karkonosze Mts., Central Europe. Geomorphology, 2010, 117, 78-89.	1.1	45
46	Genesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China. Lithos, 2016, 246-247, 13-30.	0.6	45
47	The tetrad effect and geochemistry of apatite from the Altay Koktokay No. 3 pegmatite, Xinjiang, China: implications for pegmatite petrogenesis. Mineralogy and Petrology, 2013, 107, 985-1005.	0.4	44
48	Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district, Peru: implication for paragenesis, fluid source, and gold deposition mechanisms. Mineralium Deposita, 2019, 54, 1077-1100.	1.7	44
49	Thermochronological insights into the structural contact between the Tian Shan and Pamirs, Tajikistan. Terra Nova, 2018, 30, 95-104.	0.9	43
50	Fluid evolution of Triassic and Jurassic W mineralization in the Xitian ore field, South China: Constraints from scheelite geochemistry and microthermometry. Lithos, 2019, 330-331, 1-15.	0.6	43
51	Re–Os and U–Pb geochronology of the Shazigou Mo polymetallic ore field, Inner Mongolia: Implications for Permian–Triassic mineralization at the northern margin of the North China Craton. Ore Geology Reviews, 2017, 83, 287-299.	1.1	42
52	Assessment of a spodumene ore by advanced analytical and mass spectrometry techniques to determine its amenability to processing for the extraction of lithium. Minerals Engineering, 2018, 119, 137-148.	1.8	41
53	(U–Th)/He chronology of the Robe River channel iron deposits, Hamersley Province, Western Australia. Chemical Geology, 2013, 354, 150-162.	1.4	40
54	Volcanism, mineralization and metamorphism at the Xitieshan Pb–Zn deposit, NW China: Insights from zircon geochronology and geochemistry. Ore Geology Reviews, 2017, 88, 289-303.	1.1	39

NOREEN EVANS

#	Article	IF	CITATIONS
55	Mineralization processes at the giant Jinding Zn–Pb deposit, Lanping Basin, Sanjiang Tethys Orogen: Evidence from in situ trace element analysis of pyrite and marcasite. Geological Journal, 2018, 53, 1279-1294.	0.6	39
56	Genesis of Vanadium Ores in the Otavi Mountainland, Namibia. Economic Geology, 2007, 102, 441-469.	1.8	38
57	Discriminating prolonged, episodic or disturbed monazite age spectra: An example from the Kalak Nappe Complex, Arctic Norway. Chemical Geology, 2016, 424, 96-110.	1.4	38
58	Associations between sulfides, carbonaceous material, gold and other trace elements in polyframboids: Implications for the source of orogenic gold deposits, Otago Schist, New Zealand. Geochimica Et Cosmochimica Acta, 2016, 180, 197-213.	1.6	38
59	Quantifying Exhumation at the Giant Pulang Porphyry Cu-Au Deposit Using U-Pb-He Dating. Economic Geology, 2018, 113, 1077-1092.	1.8	37
60	The exhumation history of collision-related mineralizing systems in Tibet: Insights from thermal studies of the Sharang and Yaguila deposits, central Lhasa. Ore Geology Reviews, 2015, 65, 1043-1061.	1.1	36
61	Natural Titanite Reference Materials for <i>In Situ</i> Uâ€Pb and Smâ€Nd Isotopic Measurements by <scp>LA</scp> â€(<scp>MC</scp>)â€ <scp>ICP</scp> â€ <scp>MS</scp> . Geostandards and Geoanalytical Research, 2019, 43, 355-384.	1.7	36
62	Fluorite (U–Th)/He thermochronology: Constraints on the low temperature history of Yucca Mountain, Nevada. Applied Geochemistry, 2005, 20, 1099-1105.	1.4	35
63	Combined iron and magnesium isotope geochemistry of pyroxenite xenoliths from Hannuoba, North China Craton: implications for mantle metasomatism. Contributions To Mineralogy and Petrology, 2017, 172, 1.	1.2	35
64	Survival of Ancient Landforms in a Collisional Setting as Revealed by Combined Fission Track and (U-Th)/He Thermochronometry: A Case Study from Corsica (France). Journal of Geology, 2012, 120, 155-173.	0.7	34
65	The Nadun Cu–Au mineralization, central Tibet: Root of a high sulfidation epithermal deposit. Ore Geology Reviews, 2016, 78, 371-387.	1.1	34
66	Apatite Texture, Composition, and O-Sr-Nd Isotope Signatures Record Magmatic and Hydrothermal Fluid Characteristics at the Black Mountain Porphyry Deposit, Philippines. Economic Geology, 2021, 116, 1189-1207.	1.8	34
67	An ⁴⁰ Ar/ ³⁹ Ar geochronology on a midâ€Eocene igneous event on the Barton and Weaver peninsulas: Implications for the dynamic setting of the Antarctic Peninsula. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	33
68	Tectonothermal history of the Schwarzwald Ore District (Germany): An apatite triple dating approach. Chemical Geology, 2010, 278, 58-69.	1.4	33
69	Geological and thermochronological studies of the Dashui gold deposit, West Qinling Orogen, Central China. Mineralium Deposita, 2013, 48, 397-412.	1.7	32
70	Structure and timing of Neoarchean gold mineralization in the Southern Cross district (Yilgarn) Tj ETQq0 0 0 rgB Structural Geology, 2014, 67, 205-221.	T /Overloc 1.0	k 10 Tf 50 14 32
71	Variations in Zircon Provenance Constrain Age and Geometry of an Early Paleozoic Rift in the Pinjarra Orogen, East Gondwana. Tectonics, 2017, 36, 2477-2496.	1.3	32
72	The Occurrence and Origin of Pentlandite-Chalcopyrite-Pyrrhotite Loop Textures in Magmatic Ni-Cu Sulfide Ores. Economic Geology, 2020, 115, 1777-1798.	1.8	32

5

#	Article	IF	CITATIONS
73	Fractionation of ruthenium from iridium at the Cretaceous-Tertiary boundary. Earth and Planetary Science Letters, 1995, 134, 141-153.	1.8	31
74	An in situ technique for (U–Th–Sm)/He and U–Pb double dating. Journal of Analytical Atomic Spectrometry, 2015, 30, 1636-1645.	1.6	31
75	Mesozoic magmatism and metallogeny in the Chizhou area, Middle–Lower Yangtze Valley, SE China: Constrained by petrochemistry, geochemistry and geochronology. Journal of Asian Earth Sciences, 2014, 91, 137-153.	1.0	30
76	Thermal history and differential exhumation across the Eastern Musgrave Province, South Australia: Insights from low-temperature thermochronology. Tectonophysics, 2017, 703-704, 23-41.	0.9	30
77	Phenocryst Zonation in Porphyry-Related Rocks of the Baguio District, Philippines: Evidence for Magmatic and Metallogenic Processes. Journal of Petrology, 2018, 59, 825-848.	1.1	29
78	Zircon records multiple magmatic-hydrothermal processes at the giant Shizhuyuan W–Sn–Mo–Bi polymetallic deposit, South China. Ore Geology Reviews, 2019, 115, 103160.	1.1	29
79	Early Cambrian metamorphic zircon in the northern Pinjarra Orogen: Implications for the structure of the West Australian Craton margin. Lithosphere, 2017, 9, 3-13.	0.6	28
80	Iron isotope fractionation during magmatic-hydrothermal evolution: A case study from the Duolong porphyry Cu-Au deposit, Tibet. Geochimica Et Cosmochimica Acta, 2018, 238, 1-15.	1.6	28
81	The complexity of sediment recycling as revealed by common Pb isotopes in K-feldspar. Geoscience Frontiers, 2018, 9, 1515-1527.	4.3	27
82	Sub-millennial eruptive recurrence in the silicic Mangaone Subgroup tephra sequence, New Zealand, from Bayesian modelling of zircon double-dating and radiocarbon ages. Quaternary Science Reviews, 2020, 246, 106517.	1.4	27
83	Deformation-enhanced recrystallization of titanite drives decoupling between U-Pb and trace elements. Earth and Planetary Science Letters, 2021, 560, 116810.	1.8	27
84	Emplacement age and thermal footprint of the diamondiferous Ellendale E9 lamproite pipe, Western Australia. Mineralium Deposita, 2013, 48, 413-421.	1.7	26
85	Assessing the magmatic affinity and petrogenesis of granitoids at the giant Aktogai porphyry Cu deposit, Central Kazakhstan. Numerische Mathematik, 2016, 316, 614-668.	0.7	26
86	Mineralogical evidence for crystallization conditions and petrogenesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit (Western Junggar, NW China): MA¶ssbauer spectroscopy, EPM and LA-(MC)-ICPMS analyses. Ore Geology Reviews, 2017, 86, 382-403.	1.1	26
87	Exhumation history of the Sanshandao Au deposit, Jiaodong: constraints from structural analysis and (U-Th)/He thermochronology. Scientific Reports, 2017, 7, 7787.	1.6	26
88	Geochronology, geochemistry and Sr–Nd–Hf isotopic compositions of Late Cretaceous–Eocene granites in southern Myanmar: Petrogenetic, tectonic and metallogenic implications. Ore Geology Reviews, 2019, 112, 103031.	1.1	26
89	Rapid orthopyroxene growth induced by silica assimilation: constraints from sector-zoned orthopyroxene, olivine oxygen isotopes and trace element variations in the Huangshanxi Ni–Cu deposit, Northwest China. Contributions To Mineralogy and Petrology, 2019, 174, 1.	1.2	26
90	The distribution and geochemistry of platinum-group elements as event markers in the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132, 373-390.	1.0	25

#	Article	IF	CITATIONS
91	Age constraints on faulting and fault reactivation: a multi-chronological approach. International Journal of Earth Sciences, 2010, 99, 1187-1197.	0.9	25
92	Emplacement ages and exhumation rates for intrusion-hosted Cu–Mo–Sb–Au mineral systems at Freegold Mountain (Yukon, Canada): assessment from U–Pb, Ar–Ar, and (U–Th)/He geochronometers. Canadian Journal of Earth Sciences, 2012, 49, 653-670.	0.6	25
93	Petrogenesis of ore-forming and pre/post-ore granitoids from the Kounrad, Borly and Sayak porphyry/skarn Cu deposits, Central Kazakhstan. Gondwana Research, 2016, 37, 408-425.	3.0	25
94	Thermochronology of the Sulu ultrahigh-pressure metamorphic terrane: Implications for continental collision and lithospheric thinning. Tectonophysics, 2017, 712-713, 10-29.	0.9	25
95	Probing into Thailand's basement: New insights from U–Pb geochronology, Sr, Sm–Nd, Pb and Lu–Hf isotopic systems from granitoids. Lithos, 2018, 320-321, 332-354.	0.6	25
96	Open Apatite Sr Isotopic System in Lowâ€Temperature Hydrous Regimes. Journal of Geophysical Research: Solid Earth, 2019, 124, 11192-11203.	1.4	25
97	Texturally Controlled U–Th–Pb Monazite Geochronology Reveals Paleoproterozoic UHT Metamorphic Evolution in the Khondalite Belt, North China Craton. Journal of Petrology, 2020, 61, .	1.1	25
98	Petrogenesis of Paleocene-Eocene porphyry deposit-related granitic rocks in the Yaguila-Sharang ore district, central Lhasa terrane, Tibet. Journal of Asian Earth Sciences, 2016, 129, 38-53.	1.0	24
99	Thermochronological record of Middle–Late Jurassic magmatic reheating to Eocene rift-related rapid cooling in the SE South China Block. Gondwana Research, 2017, 46, 191-203.	3.0	24
100	Metal Sources of World-Class Polymetallic W–Sn Skarns in the Nanling Range, South China: Granites versus Sedimentary Rocks?. Minerals (Basel, Switzerland), 2018, 8, 265.	0.8	24
101	Fluid-zircon interaction during low-temperature hydrothermal processes: Implications for the genesis of the Banxi antimony deposit, South China. Ore Geology Reviews, 2019, 114, 103137.	1.1	24
102	Komatiites and nickel sulfide ores of the Black Swan area, Yilgarn Craton, Western Australia. 3: Komatiite geochemistry, and implications for ore forming processes. Mineralium Deposita, 2004, 39, 729-751.	1.7	23
103	Cooling and exhumation of the mid-Jurassic porphyry copper systems in Dexing City, SE China: insights from geo- and thermochronology. Mineralium Deposita, 2014, 49, 809-819.	1.7	23
104	A multiâ€system geochronology in the Adâ€3 borehole, Pannonian Basin (Hungary) with implications for dating volcanic rocks by lowâ€ŧemperature thermochronology and for interpretation of (U–Th)/He data. Terra Nova, 2015, 27, 258-269.	0.9	23
105	Geochemistry and geochronology of zircons from granite-hosted gold mineralization in the Jiaodong Peninsula, North China: Implications for ore genesis. Ore Geology Reviews, 2019, 115, 103188.	1.1	23
106	Post-250†Ma thermal evolution of the central Cathaysia Block (SE China) in response to flat-slab subduction at the proto-Western Pacific margin. Gondwana Research, 2019, 75, 1-15.	3.0	22
107	Application of X-ray micro-computed tomography in (U–Th)/He thermochronology. Chemical Geology, 2008, 257, 101-113.	1.4	21
108	Zircon U–Th–Pb–He double dating of the Merlin kimberlite field, Northern Territory, Australia. Lithos, 2009, 112, 592-599.	0.6	21

#	Article	IF	CITATIONS
109	WA1ms: A â^1⁄42.61 Ga muscovite standard for 40Ar/39Ar dating. Geochimica Et Cosmochimica Acta, 2014, 141, 113-126.	1.6	21
110	A new â^1⁄43.46 Ga asteroid impact ejecta unit at Marble Bar, Pilbara Craton, Western Australia: A petrological, microprobe and laser ablation ICPMS study. Precambrian Research, 2016, 279, 103-122.	1.2	21
111	When will it end? Long-lived intracontinental reactivation in central Australia. Geoscience Frontiers, 2019, 10, 149-164.	4.3	21
112	Tracing metamorphism, exhumation and topographic evolution in orogenic belts by multiple thermochronology: a case study from the NÃzke Tatry Mts., Western Carpathians. Swiss Journal of Geosciences, 2011, 104, 285-298.	0.5	20
113	Late Palaeogene emplacement and late Neogene–Quaternary exhumation of the Kuril island-arc root (Kunashir island) constrained by multi-method thermochronometry. Geoscience Frontiers, 2016, 7, 211-220.	4.3	20
114	Micro- and nano-scale textural and compositional zonation in plagioclase at the Black Mountain porphyry Cu deposit: Implications for magmatic processes. American Mineralogist, 2019, 104, 391-402.	0.9	20
115	Zircon (U-Th)/He thermochronometric constraints on the mineralization of the giant Xikuangshan Sb deposit in central Hunan, South China. Mineralium Deposita, 2020, 55, 901-912.	1.7	20
116	Differentiating between Inherited and Autocrystic Zircon in Granitoids. Journal of Petrology, 2020, 61,	1.1	20
117	Shocked titanite records Chicxulub hydrothermal alteration and impact age. Geochimica Et Cosmochimica Acta, 2020, 281, 12-30.	1.6	20
118	Titanite in situ SIMS U–Pb geochronology, elemental and Nd isotopic signatures record mineralization and fluid characteristics at the Pusangguo skarn deposit, Tibet. Mineralium Deposita, 2021, 56, 907-916.	1.7	20
119	Eo-Alpine metamorphism and the â€~mid-Miocene thermal event' in the Western Carpathians (Slovakia): new evidence from multiple thermochronology. Geological Magazine, 2012, 149, 158-171.	0.9	19
120	Applications of advanced analytical and mass spectrometry techniques to the characterisation of micaceous lithium-bearing ores. Minerals Engineering, 2018, 116, 182-195.	1.8	19
121	Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet. Mineralium Deposita, 2018, 53, 299-309.	1.7	18
122	In Situ Elemental and Sr Isotope Characteristics of Magmatic to Hydrothermal Minerals from the Black Mountain Porphyry Deposit, Baguio District, Philippines. Economic Geology, 2020, 115, 927-944.	1.8	18
123	Low temperature thermochronology in the Eastern Alps: Implications for structural and topographic evolution. Tectonophysics, 2012, 541-543, 1-18.	0.9	17
124	Otolith microchemistry: Insights into bioavailable pollutants in a man-made, urban inlet. Marine Pollution Bulletin, 2017, 118, 382-387.	2.3	17
125	Volatile variations in magmas related to porphyry Cu-Au deposits: Insights from amphibole geochemistry, Duolong district, central Tibet. Ore Geology Reviews, 2018, 95, 649-662.	1.1	17
126	Fault-fluid evolution in the Xitian W–Sn ore field (South China): Constraints from scheelite texture and composition. Ore Geology Reviews, 2019, 114, 103140.	1.1	17

#	Article	IF	CITATIONS
127	Rapid Exhumation of Earth's Youngest Exposed Granites Driven by Subduction of an Oceanic Arc. Geophysical Research Letters, 2019, 46, 1259-1267.	1.5	17
128	The largest plagiogranite on Earth formed by re-melting of juvenile proto-continental crust. Communications Earth & Environment, 2021, 2, .	2.6	17
129	Accurate and precise determination of Lu and Hf contents and Hf isotopic composition at the sub-nanogram level in geological samples using MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2019, 34, 1256-1262.	1.6	16
130	Coupled detrital zircon U–Pb and Hf analysis of the Sibumasu Terrane: From Gondwana to northwest Thailand. Journal of Asian Earth Sciences, 2021, 211, 104709.	1.0	16
131	Biotite 40Ar/39Ar dating and chemical composition inform metallogenesis of Xiaoxi'nancha porphyry Au-Cu deposit, NE China. Ore Geology Reviews, 2021, 134, 104140.	1.1	16
132	Mineralisation footprints and regional timing of the world-class Siguiri orogenic gold district (Guinea, West Africa). Mineralium Deposita, 2017, 52, 539-564.	1.7	15
133	A mixture of mantle and crustal derived He–Ar–C–S ore-forming fluids at the Baogutu reduced porphyry Cu deposit, western Junggar. Journal of Asian Earth Sciences, 2015, 98, 188-197.	1.0	14
134	Thermal history of the northern Olympic Domain, Gawler Craton; correlations between thermochronometric data and mineralising systems. Gondwana Research, 2018, 56, 90-104.	3.0	14
135	Tectonic Evolution of the Eastern Moroccan Meseta: From Late Devonian Forearc Sedimentation to Early Carboniferous Collision of an Avalonian Promontory. Tectonics, 2020, 39, e2019TC005976.	1.3	14
136	Mineral chemistry and genesis of the Permian Cihai and Cinan magnetite deposits, Beishan, NW China. Ore Geology Reviews, 2017, 86, 79-99.	1.1	13
137	Geochemical and microstructural characterisation of two species of cool-water bivalves (<i>Fulvia tenuicostata</i> and <i>Soletellina) Tj ETQq1 1 0.784314</i>	4 ng₿T /C)verlack 10 ⁻
138	Archaean hydrothermal fluid modified zircons at Sunrise Dam and Kanowna Belle gold deposits, Western Australia: Implications for post-magmatic fluid activity and ore genesis. American Mineralogist, 2018, 103, 1891-1905.	0.9	13
139	U–Th–Pb geochronology and simultaneous analysis of multiple isotope systems in geological samples by LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2018, 33, 1600-1615.	1.6	13
140	Detrital shocked zircon provides first radiometric age constraint (<1472 Ma) for the Santa Fe impact structure, New Mexico, USA. Bulletin of the Geological Society of America, 2019, 131, 845-863.	1.6	13
141	Zircon double-dating of Quaternary eruptions on Jeju Island, South Korea. Journal of Volcanology and Geothermal Research, 2021, 410, 107171.	0.8	13
142	Geochronology, petrogenesis and tectonic settings of pre- and syn-ore granites from the W-Mo deposits (East Kounrad, Zhanet and Akshatau), Central Kazakhstan. Lithos, 2016, 252-253, 16-31.	0.6	12
143	Dislocations in minerals: Fast-diffusion pathways or trace-element traps?. Earth and Planetary Science Letters, 2022, 584, 117517.	1.8	12
144	The source of Dalradian detritus in the Buchan Block, NE Scotland: application of new tools to detrital datasets. Journal of the Geological Society, 2016, 173, 773-782.	0.9	11

#	Article	IF	CITATIONS
145	Genesis of the Huangshaping W–Mo–Cu–Pb–Zn deposit, South China: Role of magmatic water, metasomatized fluids, and basinal brines during intraâ€continental extension. Geological Journal, 2020, 55, 1409-1430.	0.6	11
146	Detrital zircon <scp>U–Pb–Hf</scp> data from Cambrian sandstones of the Ougarta Mountains Algeria: Implication for palaeoenvironment. Geological Journal, 2020, 55, 7760-7774.	0.6	11
147	Contamination-free preparation of geological samples for ultra-trace gold and platinum-group element analysis. Journal of Geochemical Exploration, 2003, 80, 19-24.	1.5	10
148	Laser ablation ICP-MS trace element systematics of hydrothermal pyrite in gold deposits of the Kalgoorlie district, Western Australia. Mineralium Deposita, 2020, 55, 823-844.	1.7	10
149	Geochronology, geochemistry and petrogenesis of the Dengfuxian lamprophyres: Implications for the early Cretaceous tectonic evolution of the South China Block. Chemie Der Erde, 2020, 80, 125598.	0.8	10
150	Challenging the â€~offshore hypothesis' for fossiliferous chert artefacts in southwestern Australia and consideration of inland trade routes. Quaternary Science Reviews, 2017, 156, 36-46.	1.4	9
151	Petrogenesis of the Baishan granite stock, Eastern Tianshan, NW China: Geodynamic setting and implications for potential mineralization. Lithos, 2017, 292-293, 278-293.	0.6	9
152	The Karouni Gold Deposit, Guyana, South America: Part II. Hydrothermal Alteration and Mineralization. Economic Geology, 2018, 113, 1705-1732.	1.8	9
153	Whole-rock and zircon geochemistry of the Xiaoliugou granites, North Qilian Orogen (NW China): Implications for tectonic setting, magma evolution and W–Mo mineralization. Ore Geology Reviews, 2019, 115, 103166.	1.1	9
154	Systematics of detrital zircon U–Pb ages from Cambrian–Lower Devonian rocks of northern Morocco with implications for the northern Gondwanan passive margin. Precambrian Research, 2021, 365, 106366.	1.2	9
155	Genesis of the Permian Kemozibayi sulfide-bearing mafic-ultramafic intrusion in Altay, NW China: Evidence from zircon geochronology, Hf and O isotopes and mineral chemistry. Lithos, 2017, 292-293, 49-68.	0.6	8
156	Contemporaneous east–west extension and north–south compression at 43†Ma in the Himalayan orogen. Journal of Structural Geology, 2018, 117, 124-135.	1.0	8
157	GOLD, IRIDIUM, PALLADIUM AND PLATINUM IN REFERENCE STANDARD PCC-1 AND A KOMATIITIC PERIDOTITE: IMPLICATIONS FOR SELECTION OF IGNEOUS ROCK REFERENCE MATERIALS FOR PPB-LEVEL NOBLE METAL ANALYSIS. Geostandards and Geoanalytical Research, 1992, 16, 71-79.	1.7	7
158	Further Evaluation of Penglai Zircon Megacrysts as a Reference Material for (Uâ€Th)/He Dating. Geostandards and Geoanalytical Research, 2020, 44, 763-783.	1.7	7
159	Formation of juvenile continental crust in northern Nubian Shield: New evidence from granitic zircon U-Pb-Hf-O isotopes. Precambrian Research, 2022, 379, 106791.	1.2	7
160	Data analysis of the U–Pb geochronology and Lu–Hf system in zircon and whole-rock Sr, Sm–Nd and Pb isotopic systems for the granitoids of Thailand. Data in Brief, 2018, 21, 1794-1809.	0.5	6
161	Precise and Accurate Determination of Lu and Hf Contents, and Hf Isotopic Compositions in Chinese Rock Reference Materials by MCâ€ICPâ€MS. Geostandards and Geoanalytical Research, 2020, 44, 553-565.	1.7	6
162	Nature and evolution of lithospheric mantle beneath the western North China Craton: Constraints from peridotite and pyroxenite xenoliths in the Sanyitang basalts. Lithos, 2021, 384-385, 105987.	0.6	6

#	Article	IF	CITATIONS
163	Gigantic eruption of a Carpathian volcano marks the largest Miocene transgression of Eastern Paratethys. Earth and Planetary Science Letters, 2021, 563, 116890.	1.8	6
164	Spectral reflectance: preliminary data on a new technique with potential for non-sulphide base metal exploration. Geochemistry: Exploration, Environment, Analysis, 2007, 7, 139-151.	0.5	5
165	Digesting the data - Effects of predator ingestion on the oxygen isotopic signature of micro-mammal teeth. Quaternary Science Reviews, 2017, 176, 71-84.	1.4	5
166	Iron mineralization at the Songhu deposit, Chinese Western Tianshan: a type locality with regional metallogenic implications. International Journal of Earth Sciences, 2018, 107, 291-319.	0.9	5
167	Tracing Highly Siderophile Elements through Subduction: Insights from High-pressure Serpentinites and â€~Hybrid' Rocks from Alpine Corsica. Journal of Petrology, 2020, 61, .	1.1	5
168	Emergence of continents above seaâ€ l evel influences sediment melt composition. Terra Nova, 2021, 33, 465-474.	0.9	5
169	Heavy rare-earth element and Y partitioning between monazite and garnet in aluminous granulites. Contributions To Mineralogy and Petrology, 2021, 176, 1.	1.2	5
170	Mesozoic exhumation of the Jueluotage area, Eastern Tianshan, NW China: constraints from (U–Th)/He and fission-track thermochronology. Geological Magazine, 2021, 158, 1960-1976.	0.9	4
171	SS14â€28: An Age Reference Material for Zircon Uâ€Th Disequilibrium Dating. Geostandards and Geoanalytical Research, 2022, 46, 57-69.	1.7	4
172	Geochemical and mineralogical classification of four new shergottites: NWA 10441, NWA 10818, NWA 11043, and NWA 12335. Meteoritics and Planetary Science, 2022, 57, 1194-1223.	0.7	4
173	Thermal history of an Early Paleozoic epithermal deposit: Constraints from 40Ar/39Ar and (U–Th)/He thermochronology at Zhengguang, eastern Central Asian Orogenic Belt. Ore Geology Reviews, 2020, 126, 103791.	1.1	3
174	Volatile components and magma-metal sources at the Sharang porphyry Mo deposit, Tibet. Ore Geology Reviews, 2020, 126, 103779.	1.1	3
175	A new approach to SHRIMP II zircon U-Th disequilibrium dating. Computers and Geosciences, 2022, 158, 104947.	2.0	3
176	Multi-stage metasomatism revealed by trace element content and Fe isotopic composition of minerals in peridotite xenoliths from Niutoushan in the Cathaysia Block, South China. Lithos, 2021, 406-407, 106506.	0.6	3
177	Biotite composition as a tracer of fluid evolution and mineralization center: a case study at the Qulong porphyry Cu-Mo deposit, Tibet. Mineralium Deposita, 2022, 57, 1047-1069.	1.7	3
178	Granular titanite from the Roter Kamm crater in Namibia: Product of regional metamorphism, not meteorite impact. Geoscience Frontiers, 2022, 13, 101350.	4.3	3
179	Multivariate analysis of otolith microchemistry can discriminate the source of oil contamination in exposed fish. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 254, 109253.	1.3	3
180	Magnetite geochemistry and iron isotope signature of disseminated and massive mineralization in the Kalatongke magmatic Cu Ni sulfide deposit, northwest China. Chemical Geology, 2022, 605, 120965.	1.4	3

#	Article	IF	CITATIONS
181	The pilot application of geochemical sourcing to an inland Pilbara archaeological landscape in north-western Australia. Journal of Archaeological Science: Reports, 2021, 38, 103104.	0.2	2
182	Geochemical and Crystallographic Study of <i>Turbo Torquatus</i> (Mollusca: Gastropoda) From Southwestern Australia. Geochemistry, Geophysics, Geosystems, 2018, 19, 214-231.	1.0	1
183	Mafic intrusions in southwestern Australia related to supercontinent assembly or breakup?. Australian Journal of Earth Sciences, 0, , 1-23.	0.4	1
184	Considerations for double-dating zircon in secular disequilibrium with protracted crystallisation histories. Chemical Geology, 2021, 581, 120408.	1.4	1
185	Eocene arc magmatism and related Cu-Au (Mo) mineralization in the Shangalon-Kyungalon district, Wuntho-Popa Arc, northern Myanmar. Ore Geology Reviews, 2020, 125, 103678.	1.1	0