
Ke-Qin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6039873/publications.pdf Version: 2024-02-01

KE-OIN ZHANC

#	Article	IF	CITATIONS
1	A review of one-dimensional TiO ₂ nanostructured materials for environmental and energy applications. Journal of Materials Chemistry A, 2016, 4, 6772-6801.	5.2	793
2	Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation. Journal of Materials Chemistry A, 2016, 4, 12179-12187.	5.2	432
3	Oneâ€dimensional TiO ₂ Nanotube Photocatalysts for Solar Water Splitting. Advanced Science, 2017, 4, 1600152.	5.6	405
4	A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. International Journal of Molecular Sciences, 2017, 18, 237.	1.8	333
5	A review of TiO 2 nanostructured catalysts for sustainable H 2 generation. International Journal of Hydrogen Energy, 2017, 42, 8418-8449.	3.8	309
6	Recent Advances in TiO ₂ â€Based Nanostructured Surfaces with Controllable Wettability and Adhesion. Small, 2016, 12, 2203-2224.	5.2	278
7	Rational design of materials interface at nanoscale towards intelligent oil–water separation. Nanoscale Horizons, 2018, 3, 235-260.	4.1	262
8	In situ plasmonic Ag nanoparticle anchored TiO ₂ nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting. Nanoscale, 2016, 8, 5226-5234.	2.8	243
9	Plasticizing Silk Protein for Onâ€ S kin Stretchable Electrodes. Advanced Materials, 2018, 30, e1800129.	11.1	230
10	Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation. Chemical Engineering Journal, 2017, 330, 26-35.	6.6	228
11	Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation. Journal of Materials Chemistry A, 2017, 5, 11873-11881.	5.2	206
12	In situ observation of colloidal monolayer nucleation driven by an alternating electric field. Nature, 2004, 429, 739-743.	13.7	204
13	Robust Flowerâ€Like TiO ₂ @Cotton Fabrics with Special Wettability for Effective Selfâ€Cleaning and Versatile Oil/Water Separation. Advanced Materials Interfaces, 2015, 2, 1500220.	1.9	175
14	Additive Mixing and Conformal Coating of Noniridescent Structural Colors with Robust Mechanical Properties Fabricated by Atomization Deposition. ACS Nano, 2018, 12, 3095-3102.	7.3	139
15	Immobilization of Pt Nanoparticles via Rapid and Reusable Electropolymerization of Dopamine on TiO ₂ Nanotube Arrays for Reversible SERS Substrates and Nonenzymatic Glucose Sensors. Small, 2017, 13, 1604240.	5.2	125
16	Enhanced photocatalytic performances of n-TiO ₂ nanotubes by uniform creation of p–n heterojunctions with p-Bi ₂ O ₃ quantum dots. Nanoscale, 2015, 7, 11552-11560.	2.8	117
17	Multifunctional Superamphiphobic TiO ₂ Nanostructure Surfaces with Facile Wettability and Adhesion Engineering. Small, 2014, 10, 4865-4873.	5.2	113
18	Structural Coloration of Colloidal Fiber by Photonic Band Gap and Resonant Mie Scattering. ACS Applied Materials & Interfaces, 2015, 7, 14064-14071.	4.0	102

KE-QIN ZHANG

#	Article	IF	CITATIONS
19	Understanding the Role of Dynamic Wettability for Condensate Microdrop Selfâ€Propelling Based on Designed Superhydrophobic TiO ₂ Nanostructures. Small, 2017, 13, 1600687.	5.2	101
20	Uniform carbon dots@TiO ₂ nanotube arrays with full spectrum wavelength light activation for efficient dye degradation and overall water splitting. Nanoscale, 2017, 9, 16046-16058.	2.8	100
21	Recent advances on smart TiO ₂ nanotube platforms for sustainable drug delivery applications. International Journal of Nanomedicine, 2017, Volume 12, 151-165.	3.3	97
22	Nanostructured Copper Filaments in Electrochemical Deposition. Physical Review Letters, 2001, 86, 3827-3830.	2.9	93
23	Cooperative Assembly of a Peptide Gelator and Silk Fibroin Afford an Injectable Hydrogel for Tissue Engineering. ACS Applied Materials & Interfaces, 2018, 10, 12474-12484.	4.0	91
24	TiO ₂ nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application. Journal of Materials Chemistry A, 2015, 3, 3491-3499.	5.2	87
25	Highly Thermal-Wet Comfortable and Conformal Silk-Based Electrodes for On-Skin Sensors with Sweat Tolerance. ACS Nano, 2021, 15, 9955-9966.	7.3	79
26	Bio-inspired sensors based on photonic structures of Morpho butterfly wings: a review. Journal of Materials Chemistry C, 2016, 4, 1752-1763.	2.7	77
27	Rapid fabrication of robust, washable, self-healing superhydrophobic fabrics with non-iridescent structural color by facile spray coating. RSC Advances, 2017, 7, 8443-8452.	1.7	77
28	MoS ₂ Quantum Dots@TiO ₂ Nanotube Arrays: An Extended-Spectrum-Driven Photocatalyst for Solar Hydrogen Evolution. ChemSusChem, 2018, 11, 1708-1721.	3.6	77
29	Rapid adsorption of lead ions using porous carbon nanofibers. Chemosphere, 2019, 225, 360-367.	4.2	75
30	Sub-micron silk fibroin film with high humidity sensibility through color changing. RSC Advances, 2017, 7, 17889-17897.	1.7	66
31	Fabrication of Structurally-Colored Fibers with Axial Core–Shell Structure via Electrophoretic Deposition and Their Optical Properties. ACS Macro Letters, 2013, 2, 116-120.	2.3	60
32	Hematopoiesis toxicity induced by CdTe quantum dots determined inÂan invertebrate model organism. Biomaterials, 2014, 35, 2942-2951.	5.7	56
33	Facile and Effective Coloration of Dye-Inert Carbon Fiber Fabrics with Tunable Colors and Excellent Laundering Durability. ACS Nano, 2017, 11, 10330-10336.	7.3	53
34	Robust electrospinning cellulose acetate@TiO ₂ ultrafine fibers for dyeing water treatment by photocatalytic reactions. RSC Advances, 2015, 5, 40521-40530.	1.7	51
35	Bioinspired Porous Octacalcium Phosphate/Silk Fibroin Composite Coating Materials Prepared by Electrochemical Deposition. ACS Applied Materials & Interfaces, 2015, 7, 5634-5642.	4.0	49
36	Structural Evolution of Electrospun Composite Fibers from the Blend of Polyvinyl Alcohol and Polymer Nanoparticles. Langmuir, 2012, 28, 15418-15424.	1.6	47

KE-QIN ZHANG

#	Article	IF	CITATIONS
37	Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning. Cellulose, 2017, 24, 1129-1141.	2.4	46
38	Biomolecule-assisted synthesis and functionality of metal nanoclusters for biological sensing: a review. Materials Chemistry Frontiers, 2019, 3, 1722-1735.	3.2	46
39	Enhancement of mechanical properties of polymeric nanofibers by controlling crystallization behavior using a simple freezing/thawing process. RSC Advances, 2017, 7, 43994-44000.	1.7	45
40	Structural Color Fibers Directly Drawn from Colloidal Suspensions with Controllable Optical Properties. ACS Applied Materials & amp; Interfaces, 2019, 11, 19388-19396.	4.0	43
41	Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups. APL Materials, 2015, 3, .	2.2	42
42	Fibrous and flexible supercapacitors comprising hierarchical nanostructures with carbon spheres and graphene oxide nanosheets. Journal of Materials Chemistry A, 2015, 3, 12761-12768.	5.2	41
43	Controlled formation of colloidal structures by an alternating electric field and its mechanisms. Journal of Chemical Physics, 2009, 130, 184901.	1.2	32
44	Two Scenarios for Colloidal Phase Transitions. Physical Review Letters, 2006, 96, 105701.	2.9	30
45	Tuning porous silica nanofibers by colloid electrospinning for dye adsorption. Applied Surface Science, 2014, 313, 389-395.	3.1	29
46	Reproductive toxicity and gender differences induced by cadmium telluride quantum dots in an invertebrate model organism. Scientific Reports, 2016, 6, 34182.	1.6	29
47	Optical and thermal properties of nonlinear optical crystal LaCa4O(BO3)3. Chemical Physics Letters, 2003, 372, 788-793.	1.2	26
48	Aprotinin Encapsulated Gold Nanoclusters: A Fluorescent Bioprobe with Dynamic Nuclear Targeting and Selective Detection of Trypsin and Heavy Metal. Bioconjugate Chemistry, 2018, 29, 4140-4148.	1.8	26
49	Continuous and rapid fabrication of photochromic fibers by facilely coating tungsten oxide/polyvinyl alcohol composites. RSC Advances, 2018, 8, 28581-28587.	1.7	25
50	Impact of fluorescent silicon nanoparticles on circulating hemolymph and hematopoiesis in an invertebrate model organism. Chemosphere, 2016, 159, 628-637.	4.2	21
51	Pattern selection induced by electroconvection in the electrodeposition of iron. Physical Review E, 2000, 61, 5512-5519.	0.8	20
52	H3O+-dependent morphological change in the electrochemical deposition of iron. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 278, 286-292.	0.9	19
53	Enhancement of mechanical and biological performance on hydroxyapatite/silk fibroin scaffolds facilitated by microwave-assisted mineralization strategy. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111401.	2.5	19
54	A review on strategies for the fabrication of graphene fibres with graphene oxide. RSC Advances, 2020, 10, 5722-5733.	1.7	17

KE-QIN ZHANG

#	Article	IF	CITATIONS
55	Switchable fluorescent AIE-active nanoporous fibers for cyclic oil adsorption. RSC Advances, 2014, 4, 17255-17261.	1.7	16
56	Controlling silk fibroin microspheres via molecular weight distribution. Materials Science and Engineering C, 2015, 50, 226-233.	3.8	16
57	Targeting and retention enhancement of quantum dots decorated with amino acids in an invertebrate model organism. Scientific Reports, 2016, 6, 19802.	1.6	16
58	Oscillations in Electrochemical Deposition of Zinc. Journal of the Physical Society of Japan, 2003, 72, 1574-1580.	0.7	15
59	Size-dependent planar colloidal crystals guided by alternating electric field. Applied Physics Letters, 2007, 90, 111911.	1.5	14
60	Determination of Elastic Constants of Two-Dimensional Close-Packed Colloidal Crystals. Langmuir, 2009, 25, 5432-5436.	1.6	13
61	Silk fibroin-derived peptide directed silver nanoclusters for cell imaging. RSC Advances, 2018, 8, 27805-27810.	1.7	13
62	SERS-active substrate assembled by Ag NW-embedded porous polystyrene fibers. RSC Advances, 2020, 10, 21845-21851.	1.7	13
63	Fabrication of Mn-Doped SrTiO3/Carbon Fiber with Oxygen Vacancy for Enhanced Photocatalytic Hydrogen Evolution. Materials, 2022, 15, 4723.	1.3	11
64	Densifying carbon nanotubes on assembly surface by the self-contraction of silk fibroin. Applied Surface Science, 2018, 436, 66-72.	3.1	10
65	Nano-Architecture by Molecular Structure-Directing Agent. Chemistry of Materials, 2008, 20, 2432-2434.	3.2	9
66	Regenerated Silk Nanofibers for Robust and Cyclic Adsorption–Desorption on Anionic Dyes. Langmuir, 2022, 38, 6376-6386.	1.6	8
67	Resonant photoemission study of single-strand deoxyribonucleic acid. Applied Physics Letters, 2006, 89, 013902.	1.5	7
68	Cultivation of a Cu/HMPC catalyst from a hyperaccumulating mustard plant for highly efficient and selective coupling reactions under mild conditions. RSC Advances, 2018, 8, 4531-4547.	1.7	7
69	Silk-Fibroin-Assisted Cathodic Electrolytic Deposition of Calcium Phosphate for Biomedical Applications. ACS Biomaterials Science and Engineering, 2019, 5, 4302-4310.	2.6	6
70	Fibers with the Tunable Structure Colors Based on the Ordered and Amorphous Structures. , 2015, , 127-154.		3
71	Sustainable wheat gluten foams used in self-expansion medical dressings. Smart Materials in Medicine, 2022, 3, 329-338.	3.7	2
72	Optical wavelet transform of fractal images. Optics Communications, 1999, 164, 171-176.	1.0	1

#	Article	IF	CITATIONS
73	Fabrication of periodically domain-inverted LiTaO3. Ferroelectrics, 1997, 197, 59-62.	0.3	0