
Stephen T Vernon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/603984/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mortality in STEMI patients without standard modifiable risk factors: a sex-disaggregated analysis of SWEDEHEART registry data. Lancet, The, 2021, 397, 1085-1094.	13.7	146
2	Increasing proportion of ST elevation myocardial infarction patients with coronary atherosclerosis poorly explained by standard modifiable risk factors. European Journal of Preventive Cardiology, 2017, 24, 1824-1830.	1.8	115
3	STâ€Segment–Elevation Myocardial Infarction (STEMI) Patients Without Standard Modifiable Cardiovascular Risk Factors—How Common Are They, and What Are Their Outcomes?. Journal of the American Heart Association, 2019, 8, e013296.	3.7	102
4	Utilizing <i>stateâ€ofâ€theâ€art</i> "omics†technology and bioinformatics to identify new biological mechanisms and biomarkers for coronary artery disease. Microcirculation, 2019, 26, e12488.	1.8	49
5	Biobanking for discovery of novel cardiovascular biomarkers using imaging-quantified disease burden: protocol for the longitudinal, prospective, BioHEART-CT cohort study. BMJ Open, 2019, 9, e028649.	1.9	36
6	Coronary artery disease in the absence of traditional risk factors: a call for action. European Heart Journal, 2021, 42, 3822-3824.	2.2	25
7	Integrating a Polygenic Risk Score for Coronary Artery Disease as a Riskâ€Enhancing Factor in the Pooled Cohort Equation: A Costâ€Effectiveness Analysis Study. Journal of the American Heart Association, 2022, 11, .	3.7	21
8	Coronary artery disease patients without standard modifiable risk factors (SMuRFs)- a forgotten group calling out for new discoveries. Cardiovascular Research, 2021, 117, e76-e78.	3.8	20
9	Singleâ€Cell Immune Profiling in Coronary Artery Disease: The Role of Stateâ€ofâ€theâ€Art Immunophenotyping With Mass Cytometry in the Diagnosis of Atherosclerosis. Journal of the American Heart Association, 2020, 9, e017759.	3.7	19
10	Metabolic Signatures in Coronary Artery Disease: Results from the BioHEART-CT Study. Cells, 2021, 10, 980.	4.1	16
11	Immunoglobulin E Sensitization to Mammalian Oligosaccharide Galactose-α-1,3 (α-Gal) Is Associated With Noncalcified Plaque, Obstructive Coronary Artery Disease, and ST-Segment–Elevated Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 352-361.	2.4	16
12	Combining structured and unstructured data in EMRs to create clinically-defined EMR-derived cohorts. BMC Medical Informatics and Decision Making, 2021, 21, 91.	3.0	9
13	Patient Endothelial Colony-Forming Cells to Model Coronary Artery Disease Susceptibility and Unravel the Role of Dysregulated Mitochondrial Redox Signalling. Antioxidants, 2021, 10, 1547.	5.1	7
14	Coronary artery disease burden in women poorly explained by traditional risk factors: Sex disaggregated analyses from the BioHEART-CT study. Atherosclerosis, 2021, 333, 100-107.	0.8	4
15	Association of Global Coagulation Profiles With Cardiovascular Risk Factors and Atherosclerosis: A Sex Disaggregated Analysis From the BioHEARTâ€CT Study. Journal of the American Heart Association, 2021, 10, e020604.	3.7	3
16	Biomarker Development in Cardiology: Reviewing the Past to Inform the Future. Cells, 2022, 11, 588.	4.1	2
17	Metabolites downstream of predicted loss-of-function variants inform relationship to disease. Molecular Genetics and Metabolism, 2019, 128, 476-482.	1.1	0

18 Metabolic Signatures of Redox-Dependent Cardiovascular Diseases. , 2019, , 159-171.

0