

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6039268/publications.pdf Version: 2024-02-01

Ητιλ Δι

#	Article	IF	CITATIONS
1	Multifunctional Polymeric Micelles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems. Nano Letters, 2006, 6, 2427-2430.	9.1	1,180
2	Surface-Engineered Magnetic Nanoparticle Platforms for Cancer Imaging and Therapy. Accounts of Chemical Research, 2011, 44, 883-892.	15.6	520
3	Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials, 2009, 30, 2919-2928.	11.4	325
4	Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Current Opinion in Pharmacology, 2014, 18, 18-27.	3.5	251
5	Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 772-788.	13.7	161
6	Simultaneous dual-colour tracking lipid droplets and lysosomes dynamics using a fluorescent probe. Chemical Science, 2019, 10, 2342-2348.	7.4	132
7	Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and in vivo imaging. Biomaterials, 2011, 32, 528-537.	11.4	126
8	Surface and Interfacial Engineering of Iron Oxide Nanoplates for Highly Efficient Magnetic Resonance Angiography. ACS Nano, 2015, 9, 3012-3022.	14.6	124
9	Disorganization of white matter architecture in major depressive disorder: a meta-analysis of diffusion tensor imaging with tract-based spatial statistics. Scientific Reports, 2016, 6, 21825.	3.3	109
10	Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like Receptor-4 signaling. Biomaterials, 2019, 203, 23-30.	11.4	102
11	Amphiphilic starlike dextran wrapped superparamagnetic iron oxide nanoparticle clsuters as effective magnetic resonance imaging probes. Biomaterials, 2013, 34, 1193-1203.	11.4	89
12	Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells. Biomaterials, 2014, 35, 9495-9507.	11.4	67
13	Nonclustered magnetite nanoparticle encapsulated biodegradable polymeric micelles with enhanced properties for in vivo tumor imaging. Journal of Materials Chemistry, 2011, 21, 4796.	6.7	62
14	Intrinsic disruption of white matter microarchitecture in first-episode, drug-naive major depressive disorder: A voxel-based meta-analysis of diffusion tensor imaging. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 76, 179-187.	4.8	56
15	Magnetofection: Magic magnetic nanoparticles for efficient gene delivery. Chinese Chemical Letters, 2020, 31, 3041-3046.	9.0	56
16	Rigid Mn(ii) chelate as efficient MRI contrast agent for vascular imaging. Dalton Transactions, 2012, 41, 14480.	3.3	51
17	Stimulusâ€Responsive Nanoparticle Magnetic Resonance Imaging Contrast Agents: Design Considerations and Applications. Advanced Healthcare Materials, 2021, 10, e2001091.	7.6	51
18	Albumin-based nanoparticles loaded with hydrophobic gadolinium chelates as T ₁ –T ₂ dual-mode contrast agents for accurate liver tumor imaging. Nanoscale, 2017, 9, 4516-4523.	5.6	50

Hua Ai

#	Article	IF	CITATIONS
19	Self-Assembly of Magnetite Nanocrystals with Amphiphilic Polyethylenimine: Structures and Applications in Magnetic Resonance Imaging. Journal of Nanoscience and Nanotechnology, 2009, 9, 378-385.	0.9	49
20	Negatively Charged Magnetite Nanoparticle Clusters as Efficient MRI Probes for Dendritic Cell Labeling and In Vivo Tracking. Advanced Functional Materials, 2015, 25, 3581-3591.	14.9	43
21	Abnormal dynamic functional connectivity of amygdalar subregions in untreated patients with first-episode major depressive disorder. Journal of Psychiatry and Neuroscience, 2018, 43, 262-272.	2.4	42
22	Superparamagnetic MRI probes for inÂvivo tracking of dendritic cell migration with a clinical 3ÂT scanner. Biomaterials, 2015, 58, 63-71.	11.4	39
23	Biodegradable and Renal-Clearable Hollow Porous Iron Oxide Nanoboxes for in Vivo Imaging. Chemistry of Materials, 2018, 30, 7950-7961.	6.7	39
24	Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex. Acta Biomaterialia, 2020, 103, 281-292.	8.3	38
25	Reduction of polyethylenimine-coated iron oxide nanoparticles induced autophagy and cytotoxicity by lactosylation. International Journal of Energy Production and Management, 2016, 3, 223-229.	3.7	29
26	Integration of Indocyanine Green Analogs as Nearâ€Infrared Fluorescent Carrier for Precise Imagingâ€Guided Gene Delivery. Small, 2020, 16, e1906538.	10.0	29
27	Assembly-Controlled Magnetic Nanoparticle Clusters as MRI Contrast Agents. ACS Biomaterials Science and Engineering, 2020, 6, 2533-2542.	5.2	28
28	Multivalent manganese complex decorated amphiphilic dextran micelles as sensitive MRI probes. Journal of Materials Chemistry B, 2015, 3, 1470-1473.	5.8	26
29	A novel fluorescent pH probe with valuable pK _a based on a twisted intramolecular charge transfer mechanism, and its applications in cell imaging. RSC Advances, 2014, 4, 36849-36853.	3.6	25
30	Lactosylated N-Alkyl polyethylenimine coated iron oxide nanoparticles induced autophagy in mouse dendritic cells. International Journal of Energy Production and Management, 2018, 5, 141-149.	3.7	25
31	Bombesin functionalized ⁶⁴ Cu-copper sulfide nanoparticles for targeted imaging of orthotopic prostate cancer. Nanomedicine, 2018, 13, 1695-1705.	3.3	23
32	Magnetic resonance imaging probes for labeling of chondrocyte cells. Journal of Materials Science: Materials in Medicine, 2011, 22, 601-606.	3.6	22
33	Mesenchymal Stem Cells Combined with Hepatocyte Growth Factor Therapy for Attenuating Ischaemic Myocardial Fibrosis: Assessment using Multimodal Molecular Imaging. Scientific Reports, 2016, 6, 33700.	3.3	22
34	White matter volume loss in amyotrophic lateral sclerosis: A meta-analysis of voxel-based morphometry studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 83, 110-117.	4.8	21
35	Iron oxide nanoparticles promote vascular endothelial cells survival from oxidative stress by enhancement of autophagy. International Journal of Energy Production and Management, 2019, 6, 221-229.	3.7	21
36	Magnetic Resonance Imaging for Monitoring of Magnetic Polyelectrolyte Capsule In Vivo Delivery. BioNanoScience, 2014, 4, 59-70.	3.5	20

Hua Ai

#	Article	IF	CITATIONS
37	Phosphorylation of LIFR promotes prostate cancer progression by activating the AKT pathway. Cancer Letters, 2019, 451, 110-121.	7.2	20
38	Proanthocyanidin-crosslinked collagen/konjac glucomannan hydrogel with improved mechanical properties and MRI trackable biodegradation for potential tissue engineering scaffolds. Journal of Materials Chemistry B, 2020, 8, 316-331.	5.8	20
39	Dual regulation of osteoclastogenesis and osteogenesis for osteoporosis therapy by iron oxide hydroxyapatite core/shell nanocomposites. International Journal of Energy Production and Management, 2021, 8, rbab027.	3.7	20
40	Super-resolution imaging and real-time tracking lysosome in living cells by a fluorescent probe. Science China Chemistry, 2018, 61, 483-489.	8.2	18
41	The effect of neighbor distance of magnetic nanoparticle clusters on magnetic resonance relaxation properties. Science Bulletin, 2016, 61, 1023-1030.	9.0	16
42	Amphiphilic dextran/magnetite nanocomposites as magnetic resonance imaging probes. Science Bulletin, 2009, 54, 2925-2933.	1.7	15
43	Cell labeling efficiency of layer-by-layer self-assembly modified silica nanoparticles. Journal of Materials Research, 2009, 24, 1317-1321.	2.6	15
44	Near-infrared fluorescent amphiphilic polycation wrapped magnetite nanoparticles as multimodality probes. Science Bulletin, 2012, 57, 4012-4018.	1.7	14
45	Photoinduced Superhydrophilicity of Gd-Doped TiO ₂ Ellipsoidal Nanoparticles Boosts <i>T</i> ₁ Contrast Enhancement for Magnetic Resonance Imaging. Nano Letters, 2022, 22, 3219-3227.	9.1	14
46	Delivery of siHIFâ€lα to Reconstruct Tumor Normoxic Microenvironment for Effective Chemotherapeutic and Photodynamic Anticancer Treatments. Small, 2021, 17, e2100609.	10.0	13
47	Self-assembled superparamagnetic nanoparticles as MRI contrast agents— A review. Chinese Physics B, 2015, 24, 127506.	1.4	12
48	Stimuliâ€Responsive Nanotheranostics. Advanced Healthcare Materials, 2021, 10, e2100243.	7.6	11
49	Integration of PEG-conjugated gadolinium complex and superparamagnetic iron oxide nanoparticles as <i>T</i> 1– <i>T</i> 2 dual-mode magnetic resonance imaging probes. International Journal of Energy Production and Management, 2021, 8, rbab064.	3.7	11
50	Tetraphenylethylene-conjugated polycation covered iron oxide nanoparticles for magnetic resonance/optical dual-mode imaging. International Journal of Energy Production and Management, 2021, 8, rbab023.	3.7	10
51	PEGylated amphiphilic polymeric manganese(<scp>ii</scp>) complexes as magnetic resonance angiographic agents. Journal of Materials Chemistry B, 2022, 10, 2204-2214.	5.8	9
52	Poly(ethylene glycol) modified Mn ²⁺ complexes as contrast agents with a prolonged observation window in rat MRA. RSC Advances, 2017, 7, 54603-54609.	3.6	8
53	Surface carboxylation of iron oxide nanoparticles brings reduced macrophage inflammatory response through inhibiting macrophage autophagy. International Journal of Energy Production and Management, 2022, 9, .	3.7	5
54	Control of the interparticle spacing in superparamagnetic iron oxide nanoparticle clusters by surface ligand engineering. Chinese Physics B, 2016, 25, 077504.	1.4	4

Hua Ai

#	Article	IF	CITATIONS
55	Accurate identification of myocardial viability after myocardial infarction with novel manganese chelateâ€based MR imaging. NMR in Biomedicine, 2019, 32, e4158.	2.8	4
56	Controlled aggregation of amphiphilic aggregationâ€induced emission polycation and superparamagnetic iron oxide nanoparticles as fluorescence/magnetic resonance imaging probes. Journal of Applied Polymer Science, 2020, 137, 48760.	2.6	4
57	MRI Tracking of Dendritic Cells Loaded with Superparamagnetic Iron Oxide Nanoparticles. Methods in Molecular Biology, 2020, 2126, 107-116.	0.9	4
58	Tracking Tumor Cells in Lymphatics in a Mice Xenograft Model by Magnetic Resonance Imaging. Molecular Imaging, 2012, 11, 7290.2012.00007.	1.4	2
59	Multifunctional Probes for Multimodality Imaging of Cancer. , 2012, , 863-903.		0
60	MRI-Visible Nanovehicle for Efficient siRNA Delivery. Methods in Molecular Biology, 2021, 2282, 195-208.	0.9	0