## Naomi C Chesler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6038398/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Assessment of Right Ventricular Function in the Research Setting: Knowledge Gaps and Pathways<br>Forward. An Official American Thoracic Society Research Statement. American Journal of Respiratory<br>and Critical Care Medicine, 2018, 198, e15-e43. | 5.6  | 220       |
| 2  | Pulmonary Vascular Wall Stiffness: An Important Contributor to the Increased Right Ventricular Afterload with Pulmonary Hypertension. Pulmonary Circulation, 2011, 1, 212-223.                                                                         | 1.7  | 172       |
| 3  | Exercise stress echocardiography for the study of the pulmonary circulation. European Respiratory<br>Journal, 2010, 35, 1273-1278.                                                                                                                     | 6.7  | 154       |
| 4  | Exercise Stress Echocardiography of the Pulmonary Circulation. Chest, 2012, 142, 1158-1165.                                                                                                                                                            | 0.8  | 149       |
| 5  | Pulmonary Circulation at Exercise. , 2012, 2, 711-741.                                                                                                                                                                                                 |      | 141       |
| 6  | Early Pulmonary Vascular Disease in Young Adults Born Preterm. American Journal of Respiratory and<br>Critical Care Medicine, 2018, 198, 1549-1558.                                                                                                    | 5.6  | 141       |
| 7  | Genderâ€Informed Mentoring Strategies for Women Engineering Scholars: On Establishing a Caring<br>Community. Journal of Engineering Education, 2002, 91, 49-55.                                                                                        | 3.0  | 131       |
| 8  | Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult<br>pulmonary arterial hypertension: Results from two institutions. Magnetic Resonance in Medicine,<br>2015, 73, 1904-1913.                                    | 3.0  | 116       |
| 9  | Fund Black scientists. Cell, 2021, 184, 561-565.                                                                                                                                                                                                       | 28.9 | 107       |
| 10 | Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with<br>hypoxia-induced hypertension. American Journal of Physiology - Heart and Circulatory Physiology,<br>2005, 288, H1209-H1217.                                 | 3.2  | 95        |
| 11 | Imaging right ventricular function to predict outcome in pulmonary arterial hypertension.<br>International Journal of Cardiology, 2016, 218, 206-211.                                                                                                  | 1.7  | 94        |
| 12 | The role of collagen in extralobar pulmonary artery stiffening in response to hypoxia-induced<br>pulmonary hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299,<br>H1823-H1831.                                 | 3.2  | 75        |
| 13 | Transmural pressure induces matrix-degrading activity in porcine arteries ex vivo. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H2002-H2009.                                                                          | 3.2  | 73        |
| 14 | MR and CT Imaging for the Evaluation ofÂPulmonary Hypertension. JACC: Cardiovascular Imaging, 2016,<br>9, 715-732.                                                                                                                                     | 5.3  | 72        |
| 15 | Measuring right ventricular function in the normal and hypertensive mouse hearts using<br>admittance-derived pressure-volume loops. American Journal of Physiology - Heart and Circulatory<br>Physiology, 2010, 299, H2069-H2075.                      | 3.2  | 69        |
| 16 | Methods for Measuring Right Ventricular Function and Hemodynamic Coupling with the Pulmonary<br>Vasculature. Annals of Biomedical Engineering, 2013, 41, 1384-1398.                                                                                    | 2.5  | 69        |
| 17 | Direct and indirect protection of right ventricular function by estrogen in an experimental model of<br>pulmonary arterial hypertension. American Journal of Physiology - Heart and Circulatory Physiology,<br>2014, 307, H273-H283.                   | 3.2  | 68        |
| 18 | A method for dynamic system characterization using hydraulic series resistance. Lab on A Chip, 2006, 6, 639.                                                                                                                                           | 6.0  | 65        |

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Surface EMG as a fatigue indicator during FES-induced isometric muscle contractions. Journal of Electromyography and Kinesiology, 1997, 7, 27-37.                                                                                                                  | 1.7 | 62        |
| 20 | 17β-Estradiol mediates superior adaptation of right ventricular function to acute strenuous exercise<br>in female rats with severe pulmonary hypertension. American Journal of Physiology - Lung Cellular<br>and Molecular Physiology, 2016, 311, L375-L388.       | 2.9 | 61        |
| 21 | Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia. Biomechanics and Modeling in Mechanobiology, 2012, 11, 279-289.                                                                                           | 2.8 | 57        |
| 22 | Association Between Preterm Birth and Arrested Cardiac Growth in Adolescents and Young Adults.<br>JAMA Cardiology, 2020, 5, 910.                                                                                                                                   | 6.1 | 56        |
| 23 | The Pipeline Still Leaks and More Than You Think: A Status Report on Gender Diversity in Biomedical Engineering, 2010, 38, 1928-1935.                                                                                                                              | 2.5 | 55        |
| 24 | Changes in Large Pulmonary Arterial Viscoelasticity in Chronic Pulmonary Hypertension. PLoS ONE, 2013, 8, e78569.                                                                                                                                                  | 2.5 | 52        |
| 25 | Early Effects of Arterial Hemodynamic Conditions on Human Saphenous Veins Perfused Ex Vivo.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1889-1895.                                                                                            | 2.4 | 48        |
| 26 | Progressive right ventricular functional and structural changes in a mouse model of pulmonary arterial hypertension. Physiological Reports, 2013, 1, e00184.                                                                                                       | 1.7 | 48        |
| 27 | A Novel Paradigm for Engineering Education: Virtual Internships With Individualized Mentoring and Assessment of Engineering Thinking. Journal of Biomechanical Engineering, 2015, 137, 024701.                                                                     | 1.3 | 48        |
| 28 | The Mechanobiology of Pulmonary Vascular Remodeling in the Congenital Absence of eNOS.<br>Biomechanics and Modeling in Mechanobiology, 2006, 5, 217-225.                                                                                                           | 2.8 | 47        |
| 29 | 17β-estradiol and estrogen receptor α protect right ventricular function in pulmonary hypertension via<br>BMPR2 and apelin. Journal of Clinical Investigation, 2021, 131, .                                                                                        | 8.2 | 47        |
| 30 | Characterization of CSF Hydrodynamics in the Presence and Absence of Tonsillar Ectopia by Means of<br>Computational Flow Analysis. American Journal of Neuroradiology, 2009, 30, 941-946.                                                                          | 2.4 | 46        |
| 31 | Shear stress regulation of nitric oxide production in uterine and placental artery endothelial cells:<br>experimental studies and hemodynamic models of shear stresses on endothelial cells. International<br>Journal of Developmental Biology, 2010, 54, 331-339. | 0.6 | 45        |
| 32 | Effects of collagen deposition on passive and active mechanical properties of large pulmonary<br>arteries in hypoxic pulmonary hypertension. Biomechanics and Modeling in Mechanobiology, 2013, 12,<br>1115-1125.                                                  | 2.8 | 45        |
| 33 | Accuracy of Doppler echocardiographic estimates of pulmonary artery pressures inÂa canine model of<br>pulmonary hypertension. Journal of Veterinary Cardiology, 2015, 17, 13-24.                                                                                   | 0.9 | 45        |
| 34 | Pulmonary vascular remodeling in isolated mouse lungs: Effects on pulsatile pressure–flow<br>relationships. Journal of Biomechanics, 2007, 40, 993-1001.                                                                                                           | 2.1 | 40        |
| 35 | Non-invasive measurement using cardiovascular magnetic resonance of changes in pulmonary artery stiffness with exercise. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 109.                                                                              | 3.3 | 39        |
| 36 | Estrogen maintains mitochondrial content and function in the right ventricle of rats with pulmonary hypertension. Physiological Reports, 2017, 5, e13157.                                                                                                          | 1.7 | 39        |

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effects of acute Rho kinase inhibition on chronic hypoxia-induced changes in proximal and distal pulmonary arterial structure and function. Journal of Applied Physiology, 2011, 110, 188-198.                                                                     | 2.5 | 38        |
| 38 | Effects of ischemia and myogenic activity on active and passive mechanical properties of rat cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2268-H2275.                                                         | 3.2 | 37        |
| 39 | Collagen-related gene and protein expression changes in the lung in response to chronic hypoxia.<br>Biomechanics and Modeling in Mechanobiology, 2009, 8, 263-272.                                                                                                 | 2.8 | 36        |
| 40 | The Role of Collagen Synthesis in Ventricular and Vascular Adaptation to Hypoxic Pulmonary<br>Hypertension. Journal of Biomechanical Engineering, 2013, 135, 021018.                                                                                               | 1.3 | 36        |
| 41 | Limiting collagen turnover via collagenase-resistance attenuates right ventricular dysfunction and fibrosis in pulmonary arterial hypertension. Physiological Reports, 2016, 4, e12815.                                                                            | 1.7 | 34        |
| 42 | The effects of vasoactivity and hypoxic pulmonary hypertension on extralobar pulmonary artery biomechanics. Journal of Biomechanics, 2010, 43, 1864-1869.                                                                                                          | 2.1 | 33        |
| 43 | Measurements of Mouse Pulmonary Artery Biomechanics. Journal of Biomechanical Engineering, 2004, 126, 309-313.                                                                                                                                                     | 1.3 | 32        |
| 44 | In Vivo and in Vitro Measurements of Pulmonary Arterial Stiffness: A Brief Review. Pulmonary Circulation, 2012, 2, 505-517.                                                                                                                                        | 1.7 | 31        |
| 45 | A novel single-beat approach to assess right ventricular systolic function. Journal of Applied<br>Physiology, 2018, 124, 283-290.                                                                                                                                  | 2.5 | 31        |
| 46 | Citation Diversity Statement in BMES Journals. Annals of Biomedical Engineering, 2021, 49, 947-949.                                                                                                                                                                | 2.5 | 31        |
| 47 | Persistent vascular collagen accumulation alters hemodynamic recovery from chronic hypoxia.<br>Journal of Biomechanics, 2012, 45, 799-804.                                                                                                                         | 2.1 | 30        |
| 48 | Mitochondria DNA mutations cause sex-dependent development of hypertension and alterations in cardiovascular function. Journal of Biomechanics, 2015, 48, 405-412.                                                                                                 | 2.1 | 30        |
| 49 | Impact of Acute Pulmonary Embolization on Arterial Stiffening and Right Ventricular Function in Dogs. Annals of Biomedical Engineering, 2013, 41, 195-204.                                                                                                         | 2.5 | 29        |
| 50 | Cardiac Tissue Structure, Properties, and Performance: A Materials Science Perspective. Annals of<br>Biomedical Engineering, 2014, 42, 2003-2013.                                                                                                                  | 2.5 | 29        |
| 51 | Time course of intermittent hypoxia-induced impairments in resistance artery structure and function.<br>Respiratory Physiology and Neurobiology, 2010, 170, 157-163.                                                                                               | 1.6 | 28        |
| 52 | Pulmonary vascular mechanics: important contributors to the increased right ventricular afterload of pulmonary hypertension. Experimental Physiology, 2013, 98, 1267-1273.                                                                                         | 2.0 | 28        |
| 53 | Non-invasive assessment of cardiac function and pulmonary vascular resistance in an canine model of<br>acute thromboembolic pulmonary hypertension using 4D flow cardiovascular magnetic resonance.<br>Journal of Cardiovascular Magnetic Resonance, 2014, 16, 23. | 3.3 | 28        |
|    |                                                                                                                                                                                                                                                                    |     |           |

54 Viscoelastic Properties of Cardiovascular Tissues. , 0, , .

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | How to measure pulmonary vascular and right ventricular function. , 2009, 2009, 177-80.                                                                                                                          |     | 26        |
| 56 | Pulmonary artery relative area change is inversely related to ex vivo measured arterial elastic<br>modulus in the canine model of acute pulmonary embolization. Journal of Biomechanics, 2014, 47,<br>2904-2910. | 2.1 | 26        |
| 57 | Hemodynamic assessment of pulmonary hypertension in mice: a model-based analysis of the disease mechanism. Biomechanics and Modeling in Mechanobiology, 2019, 18, 219-243.                                       | 2.8 | 26        |
| 58 | Right Ventricular-Pulmonary Vascular Interactions. Physiology, 2017, 32, 346-356.                                                                                                                                | 3.1 | 25        |
| 59 | Characteristic impedance: frequency or time domain approach?. Physiological Measurement, 2018, 39, 014004.                                                                                                       | 2.1 | 25        |
| 60 | Impaired Right Ventricular–Vascular Coupling in Young Adults Born Preterm. American Journal of<br>Respiratory and Critical Care Medicine, 2020, 201, 615-618.                                                    | 5.6 | 25        |
| 61 | PBX transcription factors drive pulmonary vascular adaptation to birth. Journal of Clinical<br>Investigation, 2017, 128, 655-667.                                                                                | 8.2 | 25        |
| 62 | EPISTEMIC PERSISTENCE: A SIMULATION-BASED APPROACH TO INCREASING PARTICIPATION OF WOMEN IN ENGINEERING. Journal of Women and Minorities in Science and Engineering, 2014, 20, 211-234.                           | 0.8 | 25        |
| 63 | Point:Counterpoint: Chronic hypoxia-induced pulmonary hypertension does/does not lead to loss of pulmonary vasculature. Journal of Applied Physiology, 2007, 103, 1449-1451.                                     | 2.5 | 24        |
| 64 | Magnetic Resonance and Computed Tomography Imaging of the Structural and Functional Changes of Pulmonary Arterial Hypertension. Journal of Thoracic Imaging, 2013, 28, 178-195.                                  | 1.5 | 24        |
| 65 | Analysis of cardiovascular dynamics in pulmonary hypertensive C57BL6/J mice. Frontiers in Physiology, 2013, 4, 355.                                                                                              | 2.8 | 24        |
| 66 | Reduced haemodynamic coupling and exercise are associated with vascular stiffening in pulmonary arterial hypertension. Heart, 2017, 103, 421-427.                                                                | 2.9 | 24        |
| 67 | The effects of the ovarian cycle and pregnancy on uterine vascular impedance and uterine artery mechanics. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2009, 144, S170-S178.            | 1.1 | 23        |
| 68 | 17β-Estradiol Attenuates Conduit Pulmonary Artery Mechanical Property Changes With Pulmonary<br>Arterial Hypertension. Hypertension, 2015, 66, 1082-1088.                                                        | 2.7 | 22        |
| 69 | Validation of an arterial constitutive model accounting for collagen content and crosslinking. Acta<br>Biomaterialia, 2016, 31, 276-287.                                                                         | 8.3 | 22        |
| 70 | Organ-level right ventricular dysfunction with preserved Frank-Starling mechanism in a mouse model of pulmonary arterial hypertension. Journal of Applied Physiology, 2018, 124, 1244-1253.                      | 2.5 | 21        |
| 71 | Mechanical Properties of Rat Middle Cerebral Arteries With and Without Myogenic Tone. Journal of<br>Biomechanical Engineering, 2004, 126, 76-81.                                                                 | 1.3 | 20        |
| 72 | Pulmonary Vascular Resistance and Impedance in Isolated Mouse Lungs: Effects of Pulmonary Emboli.<br>Annals of Biomedical Engineering, 2006, 34, 660-668.                                                        | 2.5 | 20        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Beneficial effects of mesenchymal stem cell delivery via a novel cardiac bioscaffold on right<br>ventricles of pulmonary arterial hypertensive rats. American Journal of Physiology - Heart and<br>Circulatory Physiology, 2019, 316, H1005-H1013. | 3.2 | 19        |

## Carotid Artery Stiffening With Aging: Structural Versus Load-Dependent Mechanisms in MESA (the) Tj ETQq0 0 0 rgBJ /Overlock 10 Tf 5

| 75 | Pulmonary vascular mechanical consequences of ischemic heart failure and implications for right<br>ventricular function. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316,<br>H1167-H1177. | 3.2 | 17 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 76 | Impedance in Isolated Mouse Lungs for the Determination of Site of Action of Vasoactive Agents and Disease. Annals of Biomedical Engineering, 2010, 38, 1854-1861.                                                     | 2.5 | 16 |
| 77 | Impact of increased hematocrit on right ventricular afterload in response to chronic hypoxia.<br>Journal of Applied Physiology, 2014, 117, 833-839.                                                                    | 2.5 | 16 |
| 78 | Increased Red Blood Cell Stiffness Increases Pulmonary Vascular Resistance and Pulmonary Arterial Pressure. Journal of Biomechanical Engineering, 2016, 138, 021012.                                                   | 1.3 | 16 |
| 79 | Pulmonary arterial strain- and remodeling-induced stiffening are differentiated in a chronic model of pulmonary hypertension. Journal of Biomechanics, 2017, 55, 92-98.                                                | 2.1 | 16 |
| 80 | Estrogen receptor-α prevents right ventricular diastolic dysfunction and fibrosis in female rats.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1459-H1473.                        | 3.2 | 16 |
| 81 | Multiscale structure-function relationships in right ventricular failure due to pressure overload.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H699-H708.                         | 3.2 | 15 |
| 82 | Influence of image segmentation on one-dimensional fluid dynamics predictions in the mouse pulmonary arteries. Journal of the Royal Society Interface, 2019, 16, 20190284.                                             | 3.4 | 15 |
| 83 | Exogenous Estrogen Preserves Distal Pulmonary Arterial Mechanics and Prevents Pulmonary<br>Hypertension in Rats. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 371-374.                       | 5.6 | 15 |
| 84 | On Belay: Peerâ€Mentoring and Adventure Education for Women Faculty in Engineering. Journal of Engineering Education, 2003, 92, 257-262.                                                                               | 3.0 | 13 |
| 85 | Pulmonary vascular collagen content, not cross-linking, contributes to right ventricular pulsatile<br>afterload and overload in early pulmonary hypertension. Journal of Applied Physiology, 2017, 122,<br>253-263.    | 2.5 | 13 |
| 86 | Stretch calculated from grip distance accurately approximates mid-specimen stretch in large elastic arteries in uniaxial tensile tests. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 107-113. | 3.1 | 12 |
| 87 | Numerical predictions of shear stress and cyclic stretch in pulmonary hypertension due to left heart failure. Biomechanics and Modeling in Mechanobiology, 2022, 21, 363-381.                                          | 2.8 | 12 |
| 88 | Particle Deposition in Arteries Ex Vivo: Effects of Pressure, Flow, and Waveform. Journal of Biomechanical Engineering, 2003, 125, 389-394.                                                                            | 1.3 | 11 |
| 89 | Human respiratory mechanics demonstration model. American Journal of Physiology - Advances in Physiology Education, 2009, 33, 53-59.                                                                                   | 1.6 | 11 |
| 90 | Heterogeneous mechanics of the mouse pulmonary arterial network. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1245-1261.                                                                                     | 2.8 | 11 |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Estrogen Preserves Pulsatile Pulmonary Arterial Hemodynamics in Pulmonary Arterial Hypertension.<br>Annals of Biomedical Engineering, 2017, 45, 632-643.                                                              | 2.5 | 11        |
| 92  | A How-To Guide for Promoting Diversity and Inclusion in Biomedical Engineering. Annals of<br>Biomedical Engineering, 2019, 47, 1167-1170.                                                                             | 2.5 | 11        |
| 93  | Exaggerated Cardiac Contractile Response to Hypoxia in Adults Born Preterm. Journal of Clinical<br>Medicine, 2021, 10, 1166.                                                                                          | 2.4 | 11        |
| 94  | Diagnosis and Treatment of Right Heart Failure in Pulmonary Vascular Diseases: A National Heart,<br>Lung, and Blood Institute Workshop. Circulation: Heart Failure, 2021, 14, .                                       | 3.9 | 11        |
| 95  | Transmission line models to simulate the impedance of the uterine vasculature during the ovarian cycle and pregnancy. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2009, 144, S184-S191.      | 1.1 | 10        |
| 96  | Patchy deletion of Bmpr1a potentiates proximal pulmonary artery remodeling in mice exposed to chronic hypoxia. Biomechanics and Modeling in Mechanobiology, 2013, 12, 33-42.                                          | 2.8 | 10        |
| 97  | Exercise-Induced Changes in Pulmonary Artery Stiffness in Pulmonary Hypertension. Frontiers in Physiology, 2019, 10, 269.                                                                                             | 2.8 | 9         |
| 98  | A Large Animal Model of Right Ventricular Failure due to Chronic Thromboembolic Pulmonary<br>Hypertension: A Focus on Function. Frontiers in Cardiovascular Medicine, 2019, 5, 189.                                   | 2.4 | 9         |
| 99  | Characterization of the Isolated, Ventilated, and Instrumented Mouse Lung Perfused with Pulsatile<br>Flow. Journal of Visualized Experiments, 2011, , .                                                               | 0.3 | 8         |
| 100 | Low Cost Magnetic Resonance Imaging-Compatible Stepper Exercise Device for Use in Cardiac Stress<br>Tests. Journal of Medical Devices, Transactions of the ASME, 2014, 8, 0450021-450028.                             | 0.7 | 8         |
| 101 | Multiscale Computational Analysis of Right Ventricular Mechanoenergetics. Journal of<br>Biomechanical Engineering, 2018, 140, .                                                                                       | 1.3 | 8         |
| 102 | Know Your Limitations: Assumptions in the Single-Beat Method for Estimating Right<br>Ventricular–Pulmonary Vascular Coupling. American Journal of Respiratory and Critical Care<br>Medicine, 2018, 198, 707-709.      | 5.6 | 8         |
| 103 | Pulmonary vascular distensibility with passive leg raise is comparable to exercise and predictive of clinical outcomes in pulmonary hypertension. Pulmonary Circulation, 2022, 12, e12029.                            | 1.7 | 7         |
| 104 | How to measure peripheral pulmonary vascular mechanics. , 2009, 2009, 173-6.                                                                                                                                          |     | 6         |
| 105 | What Does the Time Constant of the Pulmonary Circulation Tell us about the Progression of Right<br>Ventricular Dysfunction in Pulmonary Arterial Hypertension?. Pulmonary Circulation, 2015, 5, 291-295.              | 1.7 | 6         |
| 106 | Impaired Myofilament Contraction Drives Right Ventricular Failure Secondary to Pressure Overload:<br>Model Simulations, Experimental Validation, and Treatment Predictions. Frontiers in Physiology, 2018,<br>9, 731. | 2.8 | 6         |
| 107 | Pressure-Induced Vector Transport in Human Saphenous Vein. Annals of Biomedical Engineering, 2005, 33, 202-208.                                                                                                       | 2.5 | 5         |
| 108 | Blood Pressure, Artery Size, and Artery Compliance Parallel Bone Size and Strength in Mice With Differing Ece1 Expression. Journal of Biomechanical Engineering, 2013, 135, 61003-9.                                  | 1.3 | 5         |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Comparison of Approaches to Quantify Arterial Damping Capacity From Pressurization Tests on Mouse<br>Conduit Arteries. Journal of Biomechanical Engineering, 2013, 135, 54504.                       | 1.3 | 5         |
| 110 | Development of concept-based physiology lessons for biomedical engineering undergraduate students. American Journal of Physiology - Advances in Physiology Education, 2013, 37, 176-183.             | 1.6 | 5         |
| 111 | A Novel In Vivo Approach to Assess Radial and Axial Distensibility of Large and Intermediate Pulmonary<br>Artery Branches. Journal of Biomechanical Engineering, 2015, 137, 044501.                  | 1.3 | 5         |
| 112 | MRI assessment of aortic flow in patients with pulmonary arterial hypertension in response to exercise. BMC Medical Imaging, 2018, 18, 55.                                                           | 2.7 | 5         |
| 113 | Dobutamine stress MRI in pulmonary hypertension: relationships between stress pulmonary artery relative area change, RV performance, and 10â€year survival. Pulmonary Circulation, 2017, 7, 465-475. | 1.7 | 4         |
| 114 | Susceptibility to high-altitude pulmonary edema is associated with increased pulmonary arterial stiffness during exercise. Journal of Applied Physiology, 2020, 128, 514-522.                        | 2.5 | 4         |
| 115 | Multimodality Deep Phenotyping Methods to Assess Mechanisms of Poor Right<br>Ventricular–Pulmonary Artery Coupling. Function, 2022, 3, .                                                             | 2.3 | 4         |
| 116 | The stronger sex, until menopause: understanding the impact of estrogen loss on heart function.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H128-H129.          | 3.2 | 4         |
| 117 | Performance Analysis of a Cardiac Assist Device in Counterpulsation. Journal of Biomechanical Engineering, 1998, 120, 437-445.                                                                       | 1.3 | 3         |
| 118 | A Virtual Hemodialyzer Design Project for First-Year Engineers: An Epistemic Game Approach. , 2010, , .                                                                                              |     | 3         |
| 119 | Interferon-β–Induced Pulmonary Arterial Hypertension. JACC: Case Reports, 2021, 3, 1038-1043.                                                                                                        | 0.6 | 3         |
| 120 | Decreased ventricular size and mass mediate the reduced exercise capacity in adolescents and adults born premature. Early Human Development, 2021, 160, 105426.                                      | 1.8 | 3         |
| 121 | Pulmonary Vascular Mechanics. , 2011, , 73-89.                                                                                                                                                       |     | 3         |
| 122 | Hydrostatic Pressure Controls Angiogenesis Through Endothelial YAP1 During Lung Regeneration.<br>Frontiers in Bioengineering and Biotechnology, 2022, 10, 823642.                                    | 4.1 | 3         |
| 123 | Work in progress - assessing adaptive expertise in physiology using online challenge modules in biofluids. , 2009, , .                                                                               |     | 2         |
| 124 | Changes in Conduit Pulmonary Arterial Static and Dynamic Mechanical Properties During Severe<br>Hypoxic Pulmonary Hypertension. , 2012, , .                                                          |     | 2         |
| 125 | Cardiovascular Function and Structure are Preserved Despite Induced Ablation of BMP1-Related Proteinases. Cellular and Molecular Bioengineering, 2018, 11, 255-266.                                  | 2.1 | 2         |
| 126 | Dynamic FDG PET Imaging to Probe for Cardiac Metabolic Remodeling in Adults Born Premature.<br>Journal of Clinical Medicine, 2021, 10, 1301.                                                         | 2.4 | 2         |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Sex Differences in Right Ventricular Adaptation to Pressure Overload in a Rat Model. Journal of Applied Physiology, 2022, , .                                                                             | 2.5 | 2         |
| 128 | Hemodynamics and atherosclerosis. , 2001, , 134-151.                                                                                                                                                      |     | 1         |
| 129 | Dataâ€enabled cognitive modeling: Validating student engineers' fuzzy designâ€based decisionâ€making in a<br>virtual design problem. Computer Applications in Engineering Education, 2017, 25, 1001-1017. | 3.4 | 1         |
| 130 | Measuring the Complexity of Simulated Engineering Design Problems. , 0, , .                                                                                                                               |     | 1         |
| 131 | Development of a PET/MRI exercise stress test for determining cardiac glucose dependence in pulmonary arterial hypertension. Pulmonary Circulation, 2022, 12, e12025.                                     | 1.7 | 1         |
| 132 | Increased RV:LV ratio on chest CT-angiogram in COVID-19 is a marker of adverse outcomes. Egyptian<br>Heart Journal, 2022, 74, 37.                                                                         | 1.2 | 1         |
| 133 | Diffuse Myocardial Fibrosis at Cardiac MRI in Young Adults Born Prematurely: A Cross-sectional<br>Cohort Study. Radiology: Cardiothoracic Imaging, 2022, 4, .                                             | 2.5 | 1         |
| 134 | The Role of Collagen Synthesis in Ventricular and Vascular Adaptation to Hypoxic Pulmonary Hypertension. , 2012, , .                                                                                      |     | 0         |
| 135 | Right Ventricular Dysfunction in Pulmonary Arterial Hypertension: Cellular and Hemodynamic<br>Changes in a Mouse Model. , 2013, , .                                                                       |     | Ο         |
| 136 | RescuShell: A Biomechanical Design Epistemic Game for First-Year Engineering Education and<br>Potentially Increased Retention of Women. , 2013, , .                                                       |     | 0         |
| 137 | Inducing valvular regurgitation in mice via thermal ablation of cardiac valves. , 2014, 2014, 5663-6.                                                                                                     |     | 0         |
| 138 | Exercise cardiac MR assessment of diastolic function. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .                                                                                           | 3.3 | 0         |
| 139 | Letter to the Editor. Journal of Veterinary Internal Medicine, 2016, 30, 925-925.                                                                                                                         | 1.6 | 0         |
| 140 | Reply to Tello et al.: Pending Right Heart Failure in Healthy Preterm-Born Subjects?. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1009-1010.                                   | 5.6 | 0         |
| 141 | Effects of Red Blood Cell Sickling on Right Ventricular Afterload in vivo. Experimental Mechanics, 2021, 61, 229-235.                                                                                     | 2.0 | 0         |
| 142 | Mechanical Properties of Active and Passive Rat Middle Cerebral Arteries. , 2002, , .                                                                                                                     |     | 0         |
| 143 | Ex Vivo Measurement of Mouse Pulmonary Artery Biomechanics. , 2002, , .                                                                                                                                   |     | 0         |
| 144 | Hypoxia-Induced Changes in the Mechanical Properties of the Mouse Pulmonary Artery. , 2003, , .                                                                                                           |     | 0         |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Measurement of Pulmonary Impedance in Live Mice and Changes With Chronic Hypoxia. , 2010, , .                                                                                          |     | Ο         |
| 146 | Role of Collagen Content and Cross-Linking in Large Pulmonary Arterial Stiffening During Hypoxic Pulmonary Hypertension. , 2010, , .                                                   |     | 0         |
| 147 | Right Ventricular Response to Pulmonary Arterial Stiffening in a Canine Model of Acute Embolization. , 2012, , .                                                                       |     | 0         |
| 148 | Sex Differences in Right Ventricular-Vascular Coupling and Pulmonary Artery Impedance in Response to Chronic Hypoxia and Recovery. , 2012, , .                                         |     | 0         |
| 149 | Effects of Estrogen on Pulmonary Vascular Remodeling in Pulmonary Artery Hypertension. , 2013, , .                                                                                     |     | 0         |
| 150 | GBT440 Increases Hematocrit and Improves Biventricular Function in Berkeley Sickle Cell Disease Mice.<br>Journal of Biomechanical Engineering, 2021, 143, .                            | 1.3 | 0         |
| 151 | In-vivo and Ex-vivo Characterization of Estrogen Receptor α (ERα)-Mediated Effects on the Pulmonary<br>Vasculature in PH. Journal of the American College of Surgeons, 2021, 233, S42. | 0.5 | 0         |
| 152 | Non-invasive estimation of pulmonary hemodynamics from 2D-PC MRI with an arterial mechanics method. Journal of Biomechanics, 2021, 129, 110856.                                        | 2.1 | 0         |