
James B Lok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6038024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genomic basis of parasitism in the Strongyloides clade of nematodes. Nature Genetics, 2016, 48, 299-307.	21.4	226
2	Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9138-9143.	7.1	117
3	Different but overlapping populations of Strongyloides stercoralis in dogs and humans—Dogs as a possible source for zoonotic strongyloidiasis. PLoS Neglected Tropical Diseases, 2017, 11, e0005752.	3.0	117
4	Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis. Microbes and Infection, 2014, 16, 502-511.	1.9	113
5	Two-Stage Isothermal Enzymatic Amplification for Concurrent Multiplex Molecular Detection. Clinical Chemistry, 2017, 63, 714-722.	3.2	85
6	RNAseq Analysis of the Parasitic Nematode Strongyloides stercoralis Reveals Divergent Regulation of Canonical Dauer Pathways. PLoS Neglected Tropical Diseases, 2012, 6, e1854.	3.0	79
7	Strongyloides stercoralis: a model for translational research on parasitic nematode biology. WormBook, 2007, , 1-18.	5.3	76
8	Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid. PLoS Pathogens, 2016, 12, e1005358.	4.7	53
9	Transgene expression in Strongyloides stercoralis following gonadal microinjection of DNA constructs. Molecular and Biochemical Parasitology, 2002, 119, 279-284.	1.1	49
10	Methylprednisolone acetate induces, and Δ7-dafachronic acid suppresses, <i>Strongyloides stercoralis</i> hyperinfection in NSG mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 204-209.	7.1	47
11	Liposome-based transfection enhances RNAi and CRISPR-mediated mutagenesis in non-model nematode systems. Scientific Reports, 2019, 9, 483.	3.3	47
12	cGMP and NHR Signaling Co-regulate Expression of Insulin-Like Peptides and Developmental Activation of Infective Larvae in Strongyloides stercoralis. PLoS Pathogens, 2014, 10, e1004235.	4.7	41
13	The Nuclear Receptor DAF-12 Regulates Nutrient Metabolism and Reproductive Growth in Nematodes. PLoS Genetics, 2015, 11, e1005027.	3.5	41
14	Strongyloides stercoralis: Amphidial neuron pair ASJ triggers significant resumption of development by infective larvae under host-mimicking in vitro conditions. Experimental Parasitology, 2007, 115, 92-97.	1.2	37
15	Nucleic acid transfection and transgenesis in parasitic nematodes. Parasitology, 2012, 139, 574-588.	1.5	35
16	Activity of an injectable, sustained-release formulation of moxidectin administered prophylactically to mixed-breed dogs to prevent infection with Dirofilaria immitis. American Journal of Veterinary Research, 2001, 62, 1721-1726.	0.6	31
17	Evaluation of DNA Extraction Methods on Individual Helminth Egg and Larval Stages for Whole-Genome Sequencing. Frontiers in Genetics, 2019, 10, 826.	2.3	30
18	Hc-daf-2 encodes an insulin-like receptor kinase in the barber's pole worm, Haemonchus contortus, and restores partial dauer regulation. International Journal for Parasitology, 2014, 44, 485-496.	3.1	25

James B Lok

#	Article	IF	CITATIONS
19	Activation of mosquito immunity blocks the development of transmission-stage filarial nematodes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3711-3717.	7.1	25
20	CRISPR/Cas9 Mutagenesis and Expression of Dominant Mutant Transgenes as Functional Genomic Approaches in Parasitic Nematodes. Frontiers in Genetics, 2019, 10, 656.	2.3	19
21	Signaling in Parasitic Nematodes: Physicochemical Communication Between Host and Parasite and Endogenous Molecular Transduction Pathways Governing Worm Development and Survival. Current Clinical Microbiology Reports, 2016, 3, 186-197.	3.4	17
22	Heritable genetic transformation of Strongyloides stercoralis by microinjection of plasmid DNA constructs into the male germline. International Journal for Parasitology, 2017, 47, 511-515.	3.1	17
23	<i><i>piggyBac</i></i> . Mobile Genetic Elements, 2013, 3, e24417.	1.8	16
24	Identification and Preliminary Evaluation of a Novel Recombinant Protein for Serodiagnosis of Strongyloidiasis. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1165-1170.	1.4	16
25	Identification of a nuclear receptor/coactivator developmental signaling pathway in the nematode parasite <i>Strongyloides stercoralis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
26	Efficacy of an injectable, sustained-release formulation of moxidectin in preventing experimental heartworm infection in mongrel dogs challenged 12 months after administration. Veterinary Parasitology, 2005, 128, 129-135.	1.8	14
27	Advances in the Molecular and Cellular Biology of Strongyloides spp Current Tropical Medicine Reports, 2019, 6, 161-178.	3.7	14
28	Exploring the role of two interacting phosphoinositide 3-kinases of Haemonchus contortus. Parasites and Vectors, 2014, 7, 498.	2.5	13
29	Toward Understanding the Functional Role of Ss-riok-1, a RIO Protein Kinase-Encoding Gene of Strongyloides stercoralis. PLoS Neglected Tropical Diseases, 2014, 8, e3062.	3.0	13
30	Molecular characterization of the Haemonchus contortus phosphoinositide-dependent protein kinase-1 gene (Hc-pdk-1). Parasites and Vectors, 2016, 9, 65.	2.5	13
31	Reconstruction of the insulin-like signalling pathway of Haemonchus contortus. Parasites and Vectors, 2016, 9, 64.	2.5	12
32	Characterization of the endogenous DAF-12 ligand and its use as an anthelmintic agent in Strongyloides stercoralis. ELife, 2021, 10, .	6.0	11
33	Transgenic expression of a T cell epitope in Strongyloides ratti reveals that helminth-specific CD4+ T cells constitute both Th2 and Treg populations. PLoS Pathogens, 2021, 17, e1009709.	4.7	10
34	Six-month prophylactic efficacy of moxidectin sustained release (SR) injectable for dogs against experimental heartworm infection in growing puppies. Veterinary Parasitology, 2005, 133, 233-241.	1.8	8
35	Functional genomic exploration reveals that Ss-RIOK-1 is essential for the development and survival of Strongyloides stercoralis larvae. International Journal for Parasitology, 2017, 47, 933-940.	3.1	7
36	Exploring features and function of Ss-riok-3, an enigmatic kinase gene from Strongyloides stercoralis. Parasites and Vectors, 2014, 7, 561.	2.5	6

James B Lok

#	Article	IF	CITATIONS
37	Strongyloides stercoralis and Relatives: Recent Advances in General and Molecular Biology. Current Tropical Medicine Reports, 2014, 1, 194-206.	3.7	6
38	Structural and developmental expression of Ss-riok-2, an RIO protein kinase encoding gene of Strongyloides stercoralis. Scientific Reports, 2017, 7, 8693.	3.3	6
39	Transcriptional profiles in Strongyloides stercoralis males reveal deviations from the Caenorhabditis sex determination model. Scientific Reports, 2021, 11, 8254.	3.3	6
40	Diagnostic Potential of an IgE-ELISA in Detecting Strongyloidiasis. American Journal of Tropical Medicine and Hygiene, 2020, 103, 2288-2293.	1.4	4
41	The â€~nuclear option' revisited: Confirmation of Ss-daf-12 function and therapeutic potential in Strongyloides stercoralis and other parasitic nematode infections. Molecular and Biochemical Parasitology, 2022, 250, 111490.	1.1	4
42	A novel assay to isolate and quantify third-stage Dirofilaria immitis and Brugia malayi larvae emerging from individual Aedes aegypti. Parasites and Vectors, 2021, 14, 30.	2.5	3
43	Strongyloides-Specific IgE Phage cDNA Clones and Development of a Novel ELISA for Strongyloidiasis. Diagnostics, 2021, 11, 985.	2.6	3
44	Strongyloides stercoralis and HTLV-1 coinfection in CD34+ cord blood stem cell humanized mice: Alteration of cytokine responses and enhancement of larval growth. PLoS Neglected Tropical Diseases, 2021, 15, e0009559.	3.0	3
45	Bacillus thuringiensis Cry5B is Active against Strongyloides stercoralis in vitro. American Journal of Tropical Medicine and Hygiene, 2019, 101, 1177-1182.	1.4	3
46	The Developmental Biology of Parasitic Nematodes. PLoS Pathogens, 2016, 12, e1005328.	4.7	2