Guangsheng Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6038013/publications.pdf

Version: 2024-02-01

87 papers

2,442 citations

257450 24 h-index 223800 46 g-index

88 all docs 88 docs citations

88 times ranked 4026 citing authors

#	Article	IF	CITATIONS
1	Hollow Metal–Organicâ€Framework Micro/Nanostructures and their Derivatives: Emerging Multifunctional Materials. Advanced Materials, 2019, 31, e1803291.	21.0	210
2	A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors. Journal of Materials Chemistry, 2012, 22, 13464.	6.7	202
3	Observation of Bodyâ€Centered Cubic Gold Nanocluster. Angewandte Chemie - International Edition, 2015, 54, 9826-9829.	13.8	147
4	Controlling the Particle Size of Calcined SnO2 Nanocrystals. Nano Letters, 2001, 1, 723-726.	9.1	135
5	Fast response and highly selective sensing of amine vapors using a luminescent coordination polymer. Chemical Communications, 2014, 50, 10506-10509.	4.1	119
6	Tuning the Aggregation/Disaggregation Behavior of Graphene Quantum Dots by Structure-Switching Aptamer for High-Sensitivity Fluorescent Ochratoxin A Sensor. Analytical Chemistry, 2017, 89, 1704-1709.	6.5	113
7	Rational design of NiFe LDH@Ni ₃ N nano/microsheet arrays as a bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2020, 8, 17202-17211.	10.3	89
8	Hexagonal mesocrystals formed by ultra-thin tungsten oxide nanowires and their electrochemical behaviour. Chemical Communications, 2010, 46, 7718.	4.1	65
9	High-performance gas sensing achieved by mesoporous tungsten oxide mesocrystals with increased oxygen vacancies. Journal of Materials Chemistry A, 2013, 1, 8653.	10.3	60
10	Magnetic photocatalysts with a p–n junction: Fe ₃ O ₄ nanoparticle and FeWO ₄ nanowire heterostructures. Nanoscale, 2014, 6, 12366-12370.	5.6	60
11	Hydrothermal synthesis of one-dimensional zinc oxides with different precursors. Nanotechnology, 2006, 17, 206-212.	2.6	57
12	Ni _x Fe _y N@C microsheet arrays on Ni foam as an efficient and durable electrocatalyst for electrolytic splitting of alkaline seawater. Journal of Materials Chemistry A, 2021, 9, 13562-13569.	10.3	54
13	PVDF-Modified TiO ₂ Nanowires Membrane with Underliquid Dual Superlyophobic Property for Switchable Separation of Oil–Water Emulsions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40925-40936.	8.0	51
14	Palladiumâ€Catalyzed αâ€Ketone Arylation under Mild Conditions. European Journal of Organic Chemistry, 2011, 2011, 1570-1574.	2.4	47
15	High adsorption capacity for dye removal by CuZn hydroxyl double salts. Environmental Science: Nano, 2014, 1, 172-180.	4.3	46
16	Hydrothermal Synthesis of a CaNb ₂ O ₆ Hierarchical Micro/Nanostructure and Its Enhanced Photocatalytic Activity. European Journal of Inorganic Chemistry, 2010, 2010, 1275-1282.	2.0	37
17	Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 catalyzed by N-heterocyclic carbene at atmospheric pressure. RSC Advances, 2015, 5, 5032-5037.	3.6	35
18	Photothermal Conversion of W $<$ sub $>$ 18 $<$ /sub $>$ 0 $<$ sub $>$ 49 $<$ /sub $>$ with a Tunable Oxidation State. ChemistryOpen, 2017, 6, 261-265.	1.9	34

#	Article	IF	CITATIONS
19	Simple, efficient and reusable Pd–NHC catalysts for hydroamination. RSC Advances, 2013, 3, 18359.	3.6	30
20	Highly efficient aqueous-processed polymer/nanocrystal hybrid solar cells with an aqueous-processed TiO ₂ electron extraction layer. Journal of Materials Chemistry A, 2016, 4, 11738-11746.	10.3	26
21	Synthesis of Oxazolidinones and Derivatives through Threeâ€Component Fixation of Carbon Dioxide. ChemCatChem, 2018, 10, 3057-3068.	3.7	26
22	High-flux and high rejection TiO2 nanofibers ultrafiltration membrane with porous titanium as supporter. Separation and Purification Technology, 2020, 248, 117000.	7.9	26
23	Toward understanding the growth mechanism of Aun(SR)m nanoclusters: effect of solvent on cluster size. RSC Advances, 2013, 3, 9778.	3.6	25
24	Preparation of Cu2O Hollow Nanospheres under Reflux Conditions. European Journal of Inorganic Chemistry, 2007, 2007, 3841-3844.	2.0	24
25	Synthesis of ultrasmall platinum nanoparticles and structural relaxation. Journal of Colloid and Interface Science, 2014, 423, 123-128.	9.4	24
26	Effective, transition metal free and selective C–F activation under mild conditions. RSC Advances, 2015, 5, 7035-7048.	3.6	23
27	Construction of Plasmonic Core–Satellite Nanostructures on Substrates Based on DNA-Directed Self-Assembly as a Sensitive and Reproducible Biosensor. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27131-27139.	8.0	23
28	Synthesis of reduced cubic phase WO 3 \hat{a} x nanosheet by direct reduction of H 2 WO 4 \hat{A} H 2 O. Materials Today Energy, 2017, 6, 146-153.	4.7	23
29	Hydrothermal Synthesis, Characterization, and Ionic Conductivity of Vanadium-Stabilized Bi17V3O33with Fluorite-Related Superlattice Structure. Chemistry of Materials, 1998, 10, 2446-2449.	6.7	21
30	Preparation of ZnO Nanowires in a Neutral Aqueous System: Concentration Effect on the Orientation Attachment Process. European Journal of Inorganic Chemistry, 2006, 2006, 3818-3822.	2.0	21
31	Stainless steel mesh supported TiO2 nanowires membrane with ultra-high flux for separation of oil-in-water mixtures and emulsions. Surface and Coatings Technology, 2019, 375, 518-526.	4.8	21
32	Fabrication of Two-Dimensional ZnO Nanostructures from Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 17213-17220.	3.1	20
33	Synthesis and Characterization of N-Doped Porous TiO2 Hollow Spheres and Their Photocatalytic and Optical Properties. Materials, 2016, 9, 849.	2.9	20
34	Chitosan modified inorganic nanowires membranes for ultra-fast and efficient removal of Congo red. Applied Surface Science, 2021, 569, 150970.	6.1	20
35	Synergistic effect of the reducing ability and hydrogen bonds of tested gases: highly orientational CdS dendrite sensors. Journal of Materials Chemistry A, 2014, 2, 1032-1038.	10.3	19
36	Synthesis, Structure, and Reactivity of Dicarbene Dipalladium Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 575-581.	1.2	18

3

#	Article	IF	Citations
37	Sn-Doped defect pyrochlore oxide KNbWO ₆ ·H ₂ O microcrystals and their photocatalytic reduction of CO ₂ . New Journal of Chemistry, 2018, 42, 5753-5758.	2.8	18
38	An RAPET approach to in situ synthesis of carbon modified Li ₄ Ti ₅ O ₁₂ anode nanocrystals with improved conductivity. New Journal of Chemistry, 2014, 38, 616-623.	2.8	17
39	Interfacial engineering of metal–organic frameworks/graphene oxide composite membrane by polyethyleneimine for efficient H ₂ /CH ₄ gas separation. Inorganic Chemistry Frontiers, 2019, 6, 2043-2049.	6.0	17
40	Phase transition of BiVO4 nanoparticles in molten salt and the enhancement of visible-light photocatalytic activity. Journal of Nanoparticle Research, 2010, 12, 3069-3075.	1.9	16
41	Solvothermal synthesis of the defect pyrochlore KNbWO6·H2O and its application in Pb2+ removal. RSC Advances, 2014, 4, 14357.	3.6	16
42	MoS2/CuS nanosheets coated on brass mesh with switchable superwettability for efficient immiscible organic solvent/water separation. Applied Surface Science, 2021, 570, 151128.	6.1	16
43	Cheap Cu(I)/Hexamethylenetetramine (HMTA) Catalytic System for C-N Coupling Reactions. Synthetic Communications, 2012, 42, 279-284.	2.1	15
44	Synthesis of blue anatase TiO 2 nanoplates with $\{001\}$ facets and in situ noble metal anchoring. Dyes and Pigments, 2016, 129, 191-198.	3.7	15
45	Synthesis of fluorinated carbazoles via C–H arylation catalyzed by Pd/Cu bimetal system and their antibacterial activities. Bioorganic and Medicinal Chemistry, 2016, 24, 1376-1383.	3.0	15
46	A degradation column for organic dyes based on a composite of CuFeS2 nanocrystals and sawdust. Journal of Materials Science, 2016, 51, 5412-5420.	3.7	15
47	Three oxidation states and atomic-scale p–n junctions in manganese perovskite oxide from hydrothermal systems. Journal of Materials Science, 2008, 43, 2131-2137.	3.7	14
48	The influence of annealing atmosphere on the optical properties of flower-like ZnO. Crystal Research and Technology, 2007, 42, 1068-1072.	1.3	13
49	Fabrication and magnetic property of \hat{l} ±-Fe2O3 nanoparticles/TiO2 nanowires hybrid structure. Materials Letters, 2010, 64, 1704-1706.	2.6	13
50	Preparation of magnetically separable mesoporous Co@carbon/silica composites by the RAPET method. New Journal of Chemistry, 2012, 36, 2308.	2.8	13
51	The luminescence of ion-exchangeable defect pyrochlore KNbWO ₆ ·H ₂ O:xEu ³⁺ . RSC Advances, 2014, 4, 24142-24146.	3.6	13
52	Hydrothermal synthesis and magnetic properties of CuSb2O6 nanoparticles and nanorods. Journal of Nanoparticle Research, 2007, 9, 605-610.	1.9	12
53	Porous TiO2 Assembled from Monodispersed Nanoparticles. Nanoscale Research Letters, 2016, 11, 159.	5.7	12
54	Green Synthesis of Alkane Bridged Bisimidazolium Salts Under Solvent-Free Conditions. Synthetic Communications, 2012, 42, 380-387.	2.1	11

#	Article	IF	CITATIONS
55	CeO2-δ-Modified CuFe2 O4 with Enhanced Oxygen Transfer as Efficient Catalysts for Selective Oxidation of Fluorene under Mild Conditions. European Journal of Inorganic Chemistry, 2019, 2019, 91-97.	2.0	11
56	Fabrication of underliquid dual superlyophobic membrane via anchoring polyethersulfone nanoparticles on Zn-Ni-Co layered double hydroxide (LDH) nanowires with stainless steel mesh as supporter. Separation and Purification Technology, 2022, 294, 121148.	7.9	11
57	A Highly Robust Terbium Coordination Polymer as a Multiresponsive Luminescent Sensor for Detecting Pollutant Anions. European Journal of Inorganic Chemistry, 2016, 2016, 3994-3998.	2.0	10
58	ZnO microrods with etched surface prepared by two-step hydrothermal reaction. Journal of Materials Science, 2008, 43, 2149-2152.	3.7	9
59	Hydrothermal synthesis and phase stability of CoNb2O6 with a rutile structure. Materials Letters, 2011, 65, 2880-2882.	2.6	9
60	The regioselective Larock indole synthesis catalyzed by NHC–palladium complexes. RSC Advances, 2013, 3, 18345.	3.6	9
61	A Flexible, Selfâ€Floating Composite for Efficient Water Evaporation. Global Challenges, 2019, 3, 1800085.	3.6	9
62	Preparation and magnetic properties of Fe3+–Nb5+ co-doped SnO2. Journal of Solid State Chemistry, 2008, 181, 217-220.	2.9	8
63	Synthesis and Catalytic Properties of a Heterocyclic–Carbene Complex of Palladium. Journal of Chemical Research, 2011, 35, 161-162.	1.3	8
64	Ammonium Ion Intercalated Tungsten Oxide Nanorods with High Photothermal Conversion Efficiency and Low Cytotoxicity. European Journal of Inorganic Chemistry, 2019, 2019, 245-249.	2.0	8
65	Synthesis of Novel Chiral Unsymmetrical Imidazolinium Bromides. Journal of Chemical Research, 2011, 35, 608-610.	1.3	7
66	Coupling NiFe-MOF nanosheets with Ni ₃ N microsheet arrays for efficient electrocatalytic water oxidation. New Journal of Chemistry, 2021, 45, 19646-19650.	2.8	7
67	Efficient Synthesis of Alkane-Bridged N,N'-Diaryl Bisimidazolium Chlorides under Solvent-Free Conditions. Journal of Chemical Research, 2011, 35, 320-322.	1.3	6
68	Palladium/N-Heterocyclic Carbene Catalyzed Mono- and Double-Cyanation of Aryl Halides Using Potassium Ferrocyanide Trihydrate under Aerobic Conditions. Synthesis, 2015, 47, 1560-1566.	2.3	6
69	Palladium complexes with picolyl functionalized N-heterocyclic carbene ligands and their application in the Mizoroki–Heck reaction. Transition Metal Chemistry, 2013, 38, 351-358.	1.4	5
70	How the Substitution Faraway from NHCs Affects the Structural Features and Catalytic Activity of Dicarbene Dipalladium Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 444-450.	1.2	5
71	Two new supramolecular hybrids based on bi-capped Keggin {PMo12V2O42} clusters and transition metal mixed-organic-ligand complexes. Chemical Research in Chinese Universities, 2015, 31, 179-186.	2.6	5
72	One step preparation of highly dispersed TiO2 nanoparticles. Chemical Research in Chinese Universities, 2015, 31, 688-692.	2.6	5

#	Article	IF	Citations
73	Solvothermal synthesis of magnetic Fe3O4 nanospheres and their efficiency in photo-Fenton degradation of xylenol orange. Chemical Research in Chinese Universities, 2017, 33, 648-654.	2.6	5
74	Synthesis and characterization of a series of chiral NHC–Pd complexes derived from l-phenylalanine. Transition Metal Chemistry, 2013, 38, 367-375.	1.4	4
75	Synthesis of Xylylene-Bridged Dipalladium Complexes with Imidazole and Triazole-Based Di-N-Heterocyclic Carbene (NHC) Ligands. Journal of Chemical Research, 2016, 40, 735-739.	1.3	4
76	Synthesis of N-aryl-2-oxazolidinones from cyclic carbonates and aromatic amines catalyzed by bio-catalyst. Research on Chemical Intermediates, 2018, 44, 2179-2194.	2.7	4
77	Solvent–Free Synthesis of Some Triazole-Based Bis(N-Heterocyclic Carbene) Ligands. Journal of Chemical Research, 2011, 35, 686-688.	1.3	3
78	Synthesis and Catalytic Activity of Chiral Linker-Bridged Bis-N-Heterocyclic Carbene Dipalladium Complexes. Journal of Chemical Research, 2018, 42, 320-325.	1.3	3
79	Heterostructure Ag@WO3–x Composites with High Selectivity for Breaking Azo-bond. Chemical Research in Chinese Universities, 2018, 34, 517-522.	2.6	3
	First-principles study of luminescence properties of the Eu-doped defect pyrochlore oxide <mml:math< td=""><td></td><td></td></mml:math<>		
80	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi>KNbWO</mml:mi>mathvariant="normal">H<mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mo></mml:mo>O.125<mml:mrov< td=""><td>3.2</td><td>3</td></mml:mrov<></mml:mrow>	3.2	3
80	mathvariant="normal">H <mml:mn>2</mml:mn> <mml:mi< td=""><td>3.2</td><td>3</td></mml:mi<>	3.2	3
	mathvariant="normal">H <mml:mn>2</mml:mn> <mml:mi mathvariant="normal">O</mml:mi> <mml:mo>:</mml:mo> <mml:mn>0.125</mml:mn> <mml:msup><mml:mrov .="" 102,="" 2020,="" b,="" bisimidazolium="" chiral="" conditions.<="" dichlorides="" efficient="" novel="" of="" physical="" review="" solvent-free="" synthesis="" td="" under=""><td>3.2 w><mml:m< td=""><td>3 ni>Eu</td></mml:m<></td></mml:mrov></mml:msup>	3.2 w> <mml:m< td=""><td>3 ni>Eu</td></mml:m<>	3 ni>Eu
81	mathvariant="normal">H <mml:mn>2</mml:mn> <mml:mi mathvariant="normal">O</mml:mi> <mml:mo>:</mml:mo> <mml:mn>0.125</mml:mn> <mml:msup><mml:mrov .="" 102,="" 2011,="" 2020,="" 35,="" 471-473.="" activity="" and="" b,="" bisimidazolium="" catalytic="" chemical="" chiral="" complexes="" conditions.="" dichlorides="" dipalladium="" efficient="" journal="" novel="" of="" physical="" research,="" review="" solvent-free="" structure="" synthesis="" synthesis,="" td="" under="" with<="" xylylene-bridged=""><td>3.2 w><mml:n 1.3</mml:n </td><td>3 ni>Eu2</td></mml:mrov></mml:msup>	3.2 w> <mml:n 1.3</mml:n 	3 ni>Eu2
81	mathvariant="normal">H <mml:mn>2</mml:mn> <mml:mi mathvariant="normal">O</mml:mi> <mml:mo>:</mml:mo> <mml:mn>0.125</mml:mn> <mml:msup><mml:mrov 102,="" 18,<="" 193-201.="" 2011,="" 2012,="" 2017,="" 2020,="" 35,="" 42,="" 471-473.="" activity="" and="" b,="" bisimidazolium="" c-n-c="" catalytic="" chemical="" chemistry,="" chiral="" communications,="" complexes="" conditions.="" dichlorides="" dipalladium="" efficient="" heterocyclic="" journal="" ligands.="" metal="" nhc-pyrrole-nhc="" novel="" of="" physical="" pincer="" proligands.="" research,="" review="" solvent-free="" structure="" synthesis="" synthesis,="" td="" transition="" triazolylidene="" under="" with="" xylylene-bridged=""><td>3.2 w> <mml:n 1.3 1.4</mml:n </td><td>3 ni>Eu2 2</td></mml:mrov></mml:msup>	3.2 w> <mml:n 1.3 1.4</mml:n 	3 ni>Eu2 2
81 82 83	mathvariant="normal">H <mml:mn>2</mml:mn> <mml:mi mathvariant="normal">O</mml:mi> <mml:mo>:</mml:mo> <mml:mn>0.125</mml:mn> <mml:msup><mml:mrov 102,="" 165-167.="" 18,="" 193-201.="" 2011,="" 2012,="" 2017,="" 2020,="" 35,="" 42,="" 471-473.="" activity="" and="" b,="" bisimidazolium="" c-n-c="" capillary="" catalytic="" chemical="" chemistry,="" chiral="" chitosanâ€modified="" communications,="" complexes="" conditions.="" dichlorides="" dioxide="" dipalladium="" efficient="" facile="" film="" for<="" fusedâ€silica="" heterocyclic="" journal="" ligands.="" mesoporous="" metal="" nhc-pyrrole-nhc="" novel="" of="" on="" physical="" pincer="" preparation="" proligands.="" research,="" review="" solvent-free="" structure="" synthesis="" synthesis,="" td="" titanium="" transition="" triazolylidene="" under="" with="" xylylene-bridged=""><td>3.2 w> <mml:n 1.3 1.4</mml:n </td><td>3 ni>Eu</td></mml:mrov></mml:msup>	3.2 w> <mml:n 1.3 1.4</mml:n 	3 ni>Eu
81 82 83	mathvariant="normal">H <mml:mn>2</mml:mn> <mml:mi mathvariant="normal">O</mml:mi> <mml:mo>:</mml:mo> <mml:mn>0.125</mml:mn> <mml:msup><mml:mrov .="" 102.="" 165-167.="" 18,="" 193-201.="" 2011,="" 2012,="" 2017,="" 2020,="" 2022,="" 35,="" 42,="" 471-473.="" 8,="" a="" activity="" and="" b,="" bisimidazolium="" c-n-c="" capillary="" catalytic="" chemical="" chemistry,="" chemnanomat,="" chiral="" chiral-nhc="" chitosanâ€modified="" communications,="" complexes="" conditions.="" dichlorides="" dioxide="" dipalladium="" efficient="" enrichment="" facile="" film="" for="" fusedâ€silica="" heterocyclic="" heterocyclic<="" journal="" ligand="" ligands.="" mesoporous="" metal="" nhc-pyrrole-nhc="" novel="" of="" on="" phosphopeptides.="" physical="" pincer="" precursor.="" preparation="" proligands.="" research,="" review="" selective="" solvent-free="" structure="" synthesis="" synthesis,="" td="" titanium="" transition="" triazolylidene="" tridentate="" under="" with="" xylylene-bridged=""><td>3.2 w> <mml:m 1.3 1.4 1.2 2.8</mml:m </td><td>3 ni>Eu</td></mml:mrov></mml:msup>	3.2 w> <mml:m 1.3 1.4 1.2 2.8</mml:m 	3 ni>Eu