Jiangxiang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6038008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rice black-streaked dwarf virus P10 promotes phosphorylation of GAPDH (glyceraldehyde-3-phosphate) Tj ETQq1	1 0,78431 4.3	.4rgBT /Ove
2	Designing specific bacterial 16S primers to sequence and quantitate plant endo-bacteriome. Science China Life Sciences, 2022, 65, 1000-1013.	2.3	11
3	Rice stripe virus activates the bZIP17/28 branch of the unfolded protein response signalling pathway to promote viral infection. Molecular Plant Pathology, 2022, 23, 447-458.	2.0	10
4	An evolutionarily conserved C4HC3-type E3 ligase regulates plant broad-spectrum resistance against pathogens. Plant Cell, 2022, 34, 1822-1843.	3.1	16
5	Detection of Tomato Spotted Wilt Virus (TSWV) Infection in Plants Using DAS-ELISA and Dot-ELISA. Methods in Molecular Biology, 2022, 2400, 253-261.	0.4	2
6	Detection of Cucumber green mottle mosaic virus (CGMMV) in Cucurbitaceous Crop Seeds by RT-PCR. Methods in Molecular Biology, 2022, 2400, 275-282.	0.4	1
7	NSvc4 Encoded by Rice Stripe Virus Targets Host Chloroplasts to Suppress Chloroplast-Mediated Defense. Viruses, 2022, 14, 36.	1.5	6
8	Identification and Characterization of Two Novel Noda-like Viruses from Rice Plants Showing the Dwarfing Symptom. Viruses, 2022, 14, 1159.	1.5	2
9	Discovery and Genomic Function of a Novel Rice Dwarf-Associated Bunya-like Virus. Viruses, 2022, 14, 1183.	1.5	6
10	Palmitoylation Is Indispensable for Remorin to Restrict Tobacco Mosaic Virus Cell-to-Cell Movement in Nicotiana benthamiana. Viruses, 2022, 14, 1324.	1.5	3
11	The unfolded protein response plays dual roles in rice stripe virus infection through fine-tuning the movement protein accumulation. PLoS Pathogens, 2021, 17, e1009370.	2.1	15
12	Three Highly Sensitive and High-Throughput Serological Approaches for Detecting <i>Dickeya dadantii</i> in Sweet Potato. Plant Disease, 2021, 105, 832-839.	0.7	2
13	Development of a Mini-Replicon-Based Reverse-Genetics System for Rice Stripe Tenuivirus. Journal of Virology, 2021, 95, e0058921.	1.5	8
14	Molecular characterization of a novel wheat-infecting virus of the family Betaflexiviridae. Archives of Virology, 2021, 166, 2875-2879.	0.9	9
15	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	0.9	62
16	Three highly sensitive monoclonal antibody-based serological assays for the detection of tomato mottle mosaic virus. Phytopathology Research, 2021, 3, .	0.9	4
17	A Novel Rice Curl Dwarf-Associated Picornavirus Encodes a 3C Serine Protease Recognizing Uncommon EPT/S Cleavage Sites. Frontiers in Microbiology, 2021, 12, 757451.	1.5	5
18	Monoclonal Antibody-Based Serological Detection of Rice Stripe Mosaic Virus Infection in Rice Plants or Leafhoppers. Virologica Sinica, 2020, 35, 227-234.	1.2	10

JIANGXIANG WU

#	Article	IF	CITATIONS
19	Proteomic Changes during MCMV Infection Revealed by iTRAQ Quantitative Proteomic Analysis in Maize. International Journal of Molecular Sciences, 2020, 21, 35.	1.8	15
20	Highly sensitive serological approaches for Pepino mosaic virus detection. Journal of Zhejiang University: Science B, 2020, 21, 811-822.	1.3	9
21	Identification of a novel emaravirus infecting lilac through next-generation sequencing. Journal of Integrative Agriculture, 2020, 19, 2064-2071.	1.7	11
22	Transcriptome Analysis of Rice Reveals the IncRNA–mRNA Regulatory Network in Response to Rice Black-Streaked Dwarf Virus Infection. Viruses, 2020, 12, 951.	1.5	26
23	Monoclonal antibody-based serological detection of potato virus M in potato plants and tubers. Journal of Integrative Agriculture, 2020, 19, 1283-1291.	1.7	10
24	Development of a colloidal gold-based immunochromatographic strip for rapid detection of Rice stripe virus. Journal of Zhejiang University: Science B, 2019, 20, 343-354.	1.3	19
25	Rice black-streaked dwarf virus P10 suppresses protein kinase C in insect vector through changing the subcellular localization of LsRACK1. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180315.	1.8	24
26	Tenuivirus utilizes its glycoprotein as a helper component to overcome insect midgut barriers for its circulative and propagative transmission. PLoS Pathogens, 2019, 15, e1007655.	2.1	40
27	Monoclonal Antibody-Based Serological Detection Methods for Wheat Dwarf Virus. Virologica Sinica, 2018, 33, 173-180.	1.2	11
28	Rice Stripe Virus Interferes with S-acylation of Remorin and Induces Its Autophagic Degradation to Facilitate Virus Infection. Molecular Plant, 2018, 11, 269-287.	3.9	109
29	Development of a sensitive Luminex xMAP-based microsphere immunoassay for specific detection of Iris yellow spot virus. Virology Journal, 2018, 15, 62.	1.4	5
30	Development of an immunochromatographic strip test for rapid detection of citrus yellow vein clearing virus. Archives of Virology, 2018, 163, 349-357.	0.9	16
31	Whole genome deep sequencing revealed host impact on population structure, variation and evolution of Rice stripe virus. Virology, 2018, 524, 32-44.	1.1	8
32	Development and detection application of monoclonal antibodies against Zucchini yellow mosaic virus. Journal of Integrative Agriculture, 2017, 16, 115-124.	1.7	12
33	Monoclonal antibody-based serological detection of Citrus yellow vein clearing virus in citrus groves. Journal of Integrative Agriculture, 2017, 16, 884-891.	1.7	24
34	Genetic variation and population structure of Cucumber green mottle mosaic virus. Archives of Virology, 2017, 162, 1159-1168.	0.9	13
35	Monoclonal antibody-based serological assays for detection of Potato virus S in potato plants. Journal of Zhejiang University: Science B, 2017, 18, 1075-1082.	1.3	14
36	Characterization of a Novel Polerovirus Infecting Maize in China. Viruses, 2016, 8, 120.	1.5	64

JIANGXIANG WU

#	Article	IF	CITATIONS
37	Monoclonal antibody-based serological methods for detecting Citrus tristeza virus in citrus groves. Virologica Sinica, 2016, 31, 324-330.	1.2	14
38	The autophagy pathway participates in resistance to <i>tomato yellow leaf curl virus</i> infection in whiteflies. Autophagy, 2016, 12, 1560-1574.	4.3	108
39	Rice ragged stunt virus-induced apoptosis affects virus transmission from its insect vector, the brown planthopper to the rice plant. Scientific Reports, 2015, 5, 11413.	1.6	54
40	Development of monoclonal antibodies and serological assays specific for Barley yellow dwarf virus GAV strain. Virology Journal, 2015, 12, 136.	1.4	10
41	Rice Stripe Tenuivirus Nonstructural Protein 3 Hijacks the 26S Proteasome of the Small Brown Planthopper via Direct Interaction with Regulatory Particle Non-ATPase Subunit 3. Journal of Virology, 2015, 89, 4296-4310.	1.5	36
42	Analysis of genetic variation and diversity of Rice stripe virus populations through high-throughput sequencing. Frontiers in Plant Science, 2015, 6, 176.	1.7	37
43	Interaction between Rice stripe virus Disease-Specific Protein and Host PsbP Enhances Virus Symptoms. Molecular Plant, 2014, 7, 691-708.	3.9	153
44	Highly Sensitive and Specific Monoclonal Antibody-Based Serological Methods for Rice Ragged Stunt Virus Detection in Rice Plants and Rice Brown Planthopper Vectors. Journal of Integrative Agriculture, 2014, 13, 1943-1951.	1.7	5
45	Monoclonal antibody-based serological assays and immunocapture-RT-PCR for detecting Rice dwarf virus in field rice plants and leafhopper vectors. Journal of Virological Methods, 2014, 195, 134-140.	1.0	20
46	Highly sensitive serological methods for detecting tomato yellow leaf curl virus in tomato plants and whiteflies. Virology Journal, 2013, 10, 142.	1.4	11
47	Development and use of three monoclonal antibodies for the detection of rice black-streaked dwarf virus in field plants and planthopper vectors. Virology Journal, 2013, 10, 114.	1.4	37
48	Monoclonal antibody-based serological methods for maize chlorotic mottle virus detection in China. Journal of Zhejiang University: Science B, 2013, 14, 555-562.	1.3	27
49	Genetic variability and evolution of rice stripe virus. Journal of Zhejiang University: Science B, 2013, 14, 875-885.	1.3	11
50	Monoclonal Antibodies Against the Whitefly-Transmitted Tomato Yellow Leaf Curl Virus and Their Application in Virus Detection. Journal of Integrative Agriculture, 2012, 11, 263-268.	1.7	21
51	Monoclonal antibody-based triple antibody sandwich-enzyme-linked immunosorbent assay and immunocapture reverse transcription-polymerase chain reaction for Odontoglossum ringspot virus detection. Journal of Virological Methods, 2011, 171, 40-45.	1.0	24
52	Monoclonal antibody-based serological methods for detection of Cucumber green mottle mosaic virus. Virology Journal, 2011, 8, 228.	1.4	55
53	Monoclonal antibody-based ELISA and colloidal gold-based immunochromatographic assay for streptomycin residue detection in milk and swine urine. Journal of Zhejiang University: Science B, 2010, 11, 52-60.	1.3	38
54	Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virology, 2009, 387, 29-40.	1.1	184

JIANGXIANG WU

#	Article	IF	CITATIONS
55	Monoclonal Antibodies against the Recombinant Nucleocapsid Protein of <i>Tomato spotted wilt virus</i> and its Application in Virus Detection. Journal of Phytopathology, 2009, 157, 344-349.	0.5	27
56	Identification of a Movement Protein of the <i>Tenuivirus</i> Rice Stripe Virus. Journal of Virology, 2008, 82, 12304-12311.	1.5	156
57	Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnology Journal, 2007, 5, 570-578.	4.1	104
58	Detection and subgrouping of Cucumber mosaic virus isolates by TAS-ELISA and immunocapture RT-PCR. Journal of Virological Methods, 2005, 123, 155-161.	1.0	42