Leilei Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6037673/publications.pdf

Version: 2024-02-01

623734 677142 22 853 14 22 citations h-index g-index papers 23 23 23 788 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science, 2021, 373, 1523-1527.	12.6	274
2	Directed evolution 2.0: improving and deciphering enzyme properties. Chemical Communications, 2015, 51, 9760-9772.	4.1	122
3	A Whole Cell <i>E. coli</i> Display Platform for Artificial Metalloenzymes: Poly(phenylacetylene) Production with a Rhodium–Nitrobindin Metalloprotein. ACS Catalysis, 2018, 8, 2611-2614.	11.2	71
4	Enhanced Extracellular Production of <i>Is</i> PETase in <i>Escherichia coli</i> via Engineering of the pelB Signal Peptide. Journal of Agricultural and Food Chemistry, 2021, 69, 2245-2252.	5.2	56
5	Cavity Size Engineering of a \hat{I}^2 -Barrel Protein Generates Efficient Biohybrid Catalysts for Olefin Metathesis. ACS Catalysis, 2018, 8, 3358-3364.	11.2	39
6	Directed Evolution of an Antitumor Drug (Arginine Deiminase PpADI) for Increased Activity at Physiological pH. ChemBioChem, 2010, 11, 691-697.	2.6	35
7	A Competitive Flow Cytometry Screening System for Directed Evolution of Therapeutic Enzyme. ACS Synthetic Biology, 2015, 4, 768-775.	3.8	31
8	Directed arginine deiminase evolution for efficient inhibition of arginine-auxotrophic melanomas. Applied Microbiology and Biotechnology, 2015, 99, 1237-1247.	3.6	29
9	A Potential Antitumor Drug (Arginine Deiminase) Reengineered for Efficient Operation under Physiological Conditions. ChemBioChem, 2010, 11, 2294-2301.	2.6	27
10	Grafting PNIPAAm from \hat{I}^2 -barrel shaped transmembrane nanopores. Biomaterials, 2016, 107, 115-123.	11.4	27
11	Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose. Journal of Agricultural and Food Chemistry, 2020, 68, 15257-15266.	5.2	24
12	Loop engineering reveals the importance of active-site-decorating loops and gating residue in substrate affinity modulation of arginine deiminase (an anti-tumor enzyme). Biochemical and Biophysical Research Communications, 2018, 499, 233-238.	2.1	22
13	Protein Engineering of the Antitumor Enzyme PpADI for Improved Thermal Resistance. ChemBioChem, 2014, 15, 276-283.	2.6	18
14	Recent advances in droplet microfluidics for enzyme and cell factory engineering. Critical Reviews in Biotechnology, 2021, 41, 1023-1045.	9.0	16
15	Totally atom-economical synthesis of lactic acid from formaldehyde: combined bio-carboligation and chemo-rearrangement without the isolation of intermediates. Green Chemistry, 2020, 22, 6809-6814.	9.0	14
16	In Situ Monitoring of Membrane Protein Insertion into Block Copolymer Vesicle Membranes and Their Spreading via Potential-Assisted Approach. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29276-29289.	8.0	13
17	Rational surface engineering of an arginine deiminase (an antitumor enzyme) for increased PEGylation efficiency. Biotechnology and Bioengineering, 2019, 116, 2156-2166.	3.3	12
18	Synergistic effects of multiple enzymes from industrial Aspergillus niger strain O1 on starch saccharification. Biotechnology for Biofuels, 2021, 14, 225.	6.2	9

#	Article	IF	CITATION
19	One-pot chemoenzymatic synthesis of glycolic acid from formaldehyde. Green Chemistry, 2022, 24, 5064-5069.	9.0	9
20	Directed Evolution and Rational Design of Mechanosensitive Channel MscCG2 for Improved Glutamate Excretion Efficiency. Journal of Agricultural and Food Chemistry, 2021, 69, 15660-15669.	5.2	2
21	Biocatalytic CO ₂ fixation initiates selective oxidative cracking of 1-naphthol under ambient conditions. Green Chemistry, 2022, 24, 4766-4771.	9.0	2
22	Chemoenzymatic conversion of glycerol to lactic acid and glycolic acid. Bioresources and Bioprocessing, 2022, 9, .	4.2	1