
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6037433/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Highly efficient non-microwave instant heating synthesis of hexyl levulinate fuel additive enhanced by sulfated nanosilica catalyst. Microporous and Mesoporous Materials, 2022, 331, 111645.                                                   | 2.2  | 6         |
| 2  | Synthesis of Porous Clay Heterostructures Modified with SiO <sub>2</sub> –ZrO <sub>2</sub><br>Nanoparticles for the Valorization of Furfural in Oneâ€Pot Process. Advanced Sustainable Systems,<br>2022, 6, .                                   | 2.7  | 6         |
| 3  | Tailoring the selectivity of Cu-based catalysts in the furfural hydrogenation reaction: Influence of the silica support. Fuel, 2022, 319, 123827.                                                                                               | 3.4  | 16        |
| 4  | Oxidative condensation/esterification of furfural with ethanol using preformed Au colloidal<br>nanoparticles. Impact of stabilizer and heat treatment protocols on catalytic activity and stability.<br>Molecular Catalysis, 2022, 528, 112438. | 1.0  | 3         |
| 5  | Influence of morphology of zirconium-doped mesoporous silicas on 5-hydroxymethylfurfural production from mono-, di- and polysaccharides. Catalysis Today, 2021, 367, 297-309.                                                                   | 2.2  | 6         |
| 6  | Evaluation of the ZrO2/Al2O3 system as catalysts in the catalytic transfer hydrogenation of furfural to obtain furfuryl alcohol. Applied Catalysis A: General, 2021, 609, 117905.                                                               | 2.2  | 32        |
| 7  | Microbial Degradation of Lignocellulosic Biomass to Obtain High Value-Added Products.<br>Environmental and Microbial Biotechnology, 2021, , 283-314.                                                                                            | 0.4  | 0         |
| 8  | Continuous-Flow Methyl Methacrylate Synthesis over Gallium-Based Bifunctional Catalysts. ACS<br>Sustainable Chemistry and Engineering, 2021, 9, 1790-1803.                                                                                      | 3.2  | 16        |
| 9  | Influence of Lewis acidity and CaCl2 on the direct transformation of glucose to 5-hydroxymethylfurfural. Molecular Catalysis, 2021, 510, 111685.                                                                                                | 1.0  | 6         |
| 10 | PdO Supported on TiO <sub>2</sub> for the Oxidative Condensation of Furfural with Ethanol:<br>Insights on Reactivity and Product Selectivity. ACS Sustainable Chemistry and Engineering, 2021, 9,<br>10100-10112.                               | 3.2  | 7         |
| 11 | Synthesis of catalysts by pyrolysis of Cu-chitosan complexes and their evaluation in the hydrogenation of furfural to value-added products. Molecular Catalysis, 2021, 512, 111774.                                                             | 1.0  | 4         |
| 12 | Gas phase hydrogenation of furfural to obtain valuable products using commercial Cr-free catalysts<br>as an environmentally sustainable alternative to copper chromite. Journal of Environmental Chemical<br>Engineering, 2021, 9, 105468.      | 3.3  | 14        |
| 13 | 2-MeTHF. , 2021, , 75-98.                                                                                                                                                                                                                       |      | 2         |
| 14 | The relevance of Lewis acid sites on the gas phase reaction of levulinic acid into ethyl valerate using CoSBA-xAl bifunctional catalysts. Catalysis Science and Technology, 2021, 11, 4280-4293.                                                | 2.1  | 5         |
| 15 | Porous SiO <sub>2</sub> Nanospheres Modified with ZrO <sub>2</sub> and Their Use in One-Pot<br>Catalytic Processes to Obtain Value-Added Chemicals from Furfural. Industrial & Engineering<br>Chemistry Research, 2021, 60, 18791-18805.        | 1.8  | 10        |
| 16 | Advances in catalytic routes for the production of carboxylic acids from biomass: a step forward for sustainable polymers. Chemical Society Reviews, 2020, 49, 5704-5771.                                                                       | 18.7 | 134       |
| 17 | Oxidative Condensation of Furfural with Ethanol Using Pd-Based Catalysts: Influence of the Support.<br>Catalysts, 2020, 10, 1309.                                                                                                               | 1.6  | 6         |
| 18 | Catalytic Activity of Mixed Al2O3-ZrO2 Oxides for Glucose Conversion into 5-Hydroxymethylfurfural.<br>Catalysts, 2020, 10, 878,                                                                                                                 | 1.6  | 6         |

| #  | Article                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Gas-Phase Hydrogenation of Furfural to Furfuryl Alcohol over Cu-ZnO-Al2O3 Catalysts Prepared from<br>Layered Double Hydroxides. Catalysts, 2020, 10, 486.                                                                                                                                         | 1.6 | 15        |
| 20 | Semi-continuous mechanochemical process for biodiesel production under heterogeneous catalysis using calcium diglyceroxide. Renewable Energy, 2020, 159, 117-126.                                                                                                                                 | 4.3 | 17        |
| 21 | Recovery of pentoses-containing olive stones for their conversion into furfural in the presence of solid acid catalysts. Chemical Engineering Research and Design, 2020, 143, 1-13.                                                                                                               | 2.7 | 6         |
| 22 | Mineralizer effects on the physicochemical and catalytic properties of AlMCM-41 mesoporous materials. Microporous and Mesoporous Materials, 2020, 297, 110016.                                                                                                                                    | 2.2 | 2         |
| 23 | The role of nitride species in the gas-phase furfural hydrogenation activity of supported nickel catalysts. Molecular Catalysis, 2020, 487, 110889.                                                                                                                                               | 1.0 | 9         |
| 24 | Oxidation of lignocellulosic platform molecules to value-added chemicals using heterogeneous catalytic technologies. Catalysis Science and Technology, 2020, 10, 2721-2757.                                                                                                                       | 2.1 | 60        |
| 25 | Morphological effects on catalytic performance of LTL zeolites in acylation of 2-methylfuran enhanced by non-microwave instant heating. Materials Chemistry and Physics, 2020, 244, 122688.                                                                                                       | 2.0 | 14        |
| 26 | Production of Biofuels by 5-Hydroxymethylfurfural Etherification Using Ion-Exchange Resins as Solid<br>Acid Catalysts. , 2020, 2, .                                                                                                                                                               |     | 0         |
| 27 | Synergistic effect between CaCl2 and $\hat{1}^3$ -Al2O3 for furfural production by dehydration of hemicellulosic carbohydrates. Applied Catalysis A: General, 2019, 585, 117188.                                                                                                                  | 2.2 | 17        |
| 28 | Ultrasmall Cs-AlMCM-41 basic catalysts: Effects of aluminum addition on their physico-chemical and catalytic properties. Microporous and Mesoporous Materials, 2019, 288, 109599.                                                                                                                 | 2.2 | 6         |
| 29 | Catalytic transfer hydrogenation of furfural to furfuryl alcohol over calcined MgFe hydrotalcites.<br>Applied Clay Science, 2019, 183, 105351.                                                                                                                                                    | 2.6 | 31        |
| 30 | Influence of the Incorporation of Basic or Amphoteric Oxides on the Performance of Cu-Based Catalysts Supported on Sepiolite in Furfural Hydrogenation. Catalysts, 2019, 9, 315.                                                                                                                  | 1.6 | 18        |
| 31 | Selective Production of Furan from Gas-Phase Furfural Decarbonylation on Ni-MgO Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 7676-7685.                                                                                                                                         | 3.2 | 42        |
| 32 | Ni supported on sepiolite catalysts for the hydrogenation of furfural to value-added chemicals:<br>influence of the synthesis method on the catalytic performance. Topics in Catalysis, 2019, 62, 535-550.                                                                                        | 1.3 | 16        |
| 33 | Influence of Structure-modifying Agents in the Synthesis of Zr-doped SBA-15 Silica and Their Use as<br>Catalysts in the Furfural Hydrogenation to Obtain High Value-added Products through the<br>Meerwein-Ponndorf-Verley Reduction. International Journal of Molecular Sciences, 2019, 20, 828. | 1.8 | 25        |
| 34 | Direct Conversion of Levulinic Acid into Valeric Biofuels Using Pd Supported Over Zeolites as<br>Catalysts. Topics in Catalysis, 2019, 62, 579-588.                                                                                                                                               | 1.3 | 24        |
| 35 | Selective Conversion of Glucose to 5-Hydroxymethylfurfural by Using L-Type Zeolites with Different<br>Morphologies. Catalysts, 2019, 9, 1073.                                                                                                                                                     | 1.6 | 15        |
| 36 | Selective production of furfuryl alcohol from furfural by catalytic transfer hydrogenation over commercial aluminas. Applied Catalysis A: General, 2018, 556, 1-9.                                                                                                                                | 2.2 | 87        |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Effect of the treatment with H3PO4 on the catalytic activity of Nb2O5 supported on Zr-doped<br>mesoporous silica catalyst. Case study: Glycerol dehydration. Applied Catalysis B: Environmental, 2018,<br>221, 158-168. | 10.8 | 52        |
| 38 | Porous Silicon-Based Catalysts for the Dehydration of Glycerol to High Value-Added Products.<br>Materials, 2018, 11, 1569.                                                                                              | 1.3  | 8         |
| 39 | Promotion effect of Ce or Zn oxides for improving furfuryl alcohol yield in the furfural<br>hydrogenation using inexpensive Cu-based catalysts. Molecular Catalysis, 2018, 455, 121-131.                                | 1.0  | 40        |
| 40 | Amination of Furfural. Sustainable Chemistry Series, 2018, , 191-196.                                                                                                                                                   | 0.1  | 1         |
| 41 | Tetrahydrofurfuryl Alcohol and Derivatives. Sustainable Chemistry Series, 2018, , 79-89.                                                                                                                                | 0.1  | 0         |
| 42 | Furfuryl Alcohol and Derivatives. Sustainable Chemistry Series, 2018, , 55-78.                                                                                                                                          | 0.1  | 0         |
| 43 | Gas-phase hydrogenation of furfural over Cu/CeO2 catalysts. Catalysis Today, 2017, 279, 327-338.                                                                                                                        | 2.2  | 73        |
| 44 | Dehydration of sorbitol to isosorbide over sulfonic acid resins under solvent-free conditions.<br>Applied Catalysis A: General, 2017, 537, 66-73.                                                                       | 2.2  | 36        |
| 45 | Selective Production of 2â€Methylfuran by Gasâ€Phase Hydrogenation of Furfural on Copper<br>Incorporated by Complexation in Mesoporous Silica Catalysts. ChemSusChem, 2017, 10, 1448-1459.                              | 3.6  | 49        |
| 46 | Beneficial effects of calcium chloride on glucose dehydration to 5-hydroxymethylfurfural in the presence of alumina as catalyst. Applied Catalysis B: Environmental, 2017, 206, 617-625.                                | 10.8 | 74        |
| 47 | Selective Furfural Hydrogenation to Furfuryl Alcohol Using Cu-Based Catalysts Supported on Clay<br>Minerals. Topics in Catalysis, 2017, 60, 1040-1053.                                                                  | 1.3  | 42        |
| 48 | Aluminum doped mesoporous silica SBA-15 for glycerol dehydration to value-added chemicals. Journal of Sol-Gel Science and Technology, 2017, 83, 342-354.                                                                | 1.1  | 9         |
| 49 | Nickel Phosphide/Silica Catalysts for the Gasâ€Phase Hydrogenation of Furfural to High–Added–Value<br>Chemicals. ChemCatChem, 2017, 9, 2881-2889.                                                                       | 1.8  | 36        |
| 50 | The Key Role of Textural Properties of Aluminosilicates in the Acidâ€Catalysed Dehydration of Glucose<br>into 5â€Hydroxymethylfurfural. ChemistrySelect, 2017, 2, 2444-2451.                                            | 0.7  | 17        |
| 51 | Optimization of nickel loading of mixed oxide catalyst ex -hydrotalcite for H 2 production by methane decomposition. Applied Catalysis A: General, 2017, 548, 71-82.                                                    | 2.2  | 34        |
| 52 | Brönsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into<br>5-hydroxymethylfurfural. Chemical Engineering Journal, 2016, 303, 22-30.                                                        | 6.6  | 157       |
| 53 | WO3 supported on Zr doped mesoporous SBA-15 silica for glycerol dehydration to acrolein. Applied<br>Catalysis A: General, 2016, 516, 30-40.                                                                             | 2.2  | 37        |
| 54 | Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts. Journal of Catalysis, 2016, 336, 107-115.                                                                                                | 3.1  | 180       |

| #  | Article                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels.<br>Energy and Environmental Science, 2016, 9, 1144-1189.             | 15.6 | 1,220     |
| 56 | Vapor Phase Decarbonylation of Furfural to Furan over Nickel Supported on SBA-15 Silica Catalysts.<br>Modern Research in Catalysis, 2016, 05, 85-94.                 | 1.2  | 13        |
| 57 | REALCAT: A New Platform to Bring Catalysis to the Lightspeed. Oil and Gas Science and Technology, 2015, 70, 455-462.                                                 | 1.4  | 8         |
| 58 | V and V–P containing Zr-SBA-15 catalysts for dehydration of glycerol to acrolein. Catalysis Today, 2015, 254, 43-52.                                                 | 2.2  | 38        |
| 59 | Influence of the niobium supported species on the catalytic dehydration of glycerol to acrolein.<br>Applied Catalysis B: Environmental, 2015, 179, 139-149.          | 10.8 | 60        |
| 60 | Production of 5-hydroxymethylfurfural from glucose using aluminium doped MCM-41 silica as acid catalyst. Applied Catalysis B: Environmental, 2015, 164, 70-76.       | 10.8 | 134       |
| 61 | Furfuryl alcohol from furfural hydrogenation over copper supported on SBA-15 silica catalysts.<br>Journal of Molecular Catalysis A, 2014, 383-384, 106-113.          | 4.8  | 149       |
| 62 | Selective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate. Applied Catalysis B: Environmental, 2014, 144, 22-28.           | 10.8 | 107       |
| 63 | Glucose dehydration to 5-hydroxymethylfurfural on zirconium containing mesoporous MCM-41 silica catalysts. Fuel, 2014, 118, 265-271.                                 | 3.4  | 81        |
| 64 | Acetalization of furfural with zeolites under benign reaction conditions. Catalysis Today, 2014, 234, 233-236.                                                       | 2.2  | 71        |
| 65 | Glycerol valorization by etherification to polyglycerols by using metal oxides derived from MgFe<br>hydrotalcites. Applied Catalysis A: General, 2014, 470, 199-207. | 2.2  | 68        |
| 66 | Dehydration of d-xylose to furfural using different supported niobia catalysts. Applied Catalysis B:<br>Environmental, 2014, 152-153, 1-10.                          | 10.8 | 63        |
| 67 | Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural.<br>Applied Catalysis B: Environmental, 2014, 154-155, 190-196.          | 10.8 | 66        |
| 68 | Mesoporous Nb2O5 as solid acid catalyst for dehydration of d-xylose into furfural. Catalysis Today, 2014, 234, 119-124.                                              | 2.2  | 62        |
| 69 | Dehydration of xylose to furfural using a Lewis or Brönsted acid catalyst and N2 stripping. Chinese<br>Journal of Catalysis, 2013, 34, 1402-1406.                    | 6.9  | 33        |
| 70 | Structural and surface study of calcium glyceroxide, an active phase for biodiesel production under heterogeneous catalysis. Journal of Catalysis, 2013, 300, 30-36. | 3.1  | 74        |
| 71 | Dehydration of Xylose to Furfural over MCMâ€41â€&upported Niobiumâ€Oxide Catalysts. ChemSusChem,<br>2013, 6, 635-642.                                                | 3.6  | 80        |
| 72 | Calcium zincate derived heterogeneous catalyst for biodiesel production by ethanolysis. Fuel, 2013, 105, 518-522.                                                    | 3.4  | 32        |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Zirconium doped mesoporous silica catalysts for dehydration of glycerol to high added-value products. Applied Catalysis A: General, 2012, 433-434, 179-187.                                                                      | 2.2  | 59        |
| 74 | Mesoporous tantalum phosphate as acidic catalyst for the methanolysis of sunflower oil. Applied Catalysis B: Environmental, 2012, 123-124, 316-323.                                                                              | 10.8 | 22        |
| 75 | Preparation of stable sulfated zirconia by thermal activation from a zirconium doped mesoporous<br>MCM-41 silica: Application to the esterification of oleic acid with methanol. Fuel Processing<br>Technology, 2012, 97, 65-70. | 3.7  | 18        |
| 76 | Methanolysis of sunflower oil catalyzed by acidic Ta2O5 supported on SBA-15. Applied Catalysis A:<br>General, 2011, 405, 93-100.                                                                                                 | 2.2  | 15        |
| 77 | Niobium-containing MCM-41 silica catalysts for biodiesel production. Applied Catalysis B:<br>Environmental, 2011, 108-109, 161-167.                                                                                              | 10.8 | 64        |
| 78 | Preparation, characterization and catalytic applications of ZrO2 supported on low cost SBA-15.<br>Adsorption, 2011, 17, 527-538.                                                                                                 | 1.4  | 11        |
| 79 | Etherification of glycerol to polyglycerols over MgAl mixed oxides. Catalysis Today, 2011, 167, 84-90.                                                                                                                           | 2.2  | 81        |
| 80 | Aluminum doped SBA-15 silica as acid catalyst for the methanolysis of sunflower oil. Applied Catalysis<br>B: Environmental, 2011, 105, 199-205.                                                                                  | 10.8 | 34        |
| 81 | Biodiesel production from sunflower oil by tungsten oxide supported on zirconium doped MCM-41<br>silica. Journal of Molecular Catalysis A, 2011, 335, 205-209.                                                                   | 4.8  | 50        |
| 82 | Calcined zirconium sulfate supported on MCM-41 silica as acid catalyst for ethanolysis of sunflower oil. Applied Catalysis B: Environmental, 2011, 103, 91-98.                                                                   | 10.8 | 47        |
| 83 | Zirconium doped MCM-41 supported WO3 solid acid catalysts for the esterification of oleic acid with methanol. Applied Catalysis A: General, 2010, 379, 61-68.                                                                    | 2.2  | 59        |
| 84 | Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts.<br>Catalysis Today, 2010, 149, 281-287.                                                                                     | 2.2  | 140       |
| 85 | Base Catalysts Derived from Hydrocalumite for the Transesterification of Sunflower Oil. Energy<br>& Fuels, 2010, 24, 979-984.                                                                                                    | 2.5  | 52        |
| 86 | Transesterification of ethyl butyrate with methanol using MgO/CaO catalysts. Journal of Molecular<br>Catalysis A, 2009, 300, 19-24.                                                                                              | 4.8  | 68        |
| 87 | Al-SBA-15 as a support of catalysts based on chromium sulfide for sulfur removal. Catalysis Today, 2009, 143, 137-144.                                                                                                           | 2.2  | 16        |
| 88 | Biodiesel preparation using Li/CaO catalysts: Activation process and homogeneous contribution.<br>Catalysis Today, 2009, 143, 167-171.                                                                                           | 2.2  | 91        |
| 89 | Calcium zincate as precursor of active catalysts for biodiesel production under mild conditions.<br>Applied Catalysis B: Environmental, 2009, 91, 339-346.                                                                       | 10.8 | 61        |
| 90 | CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Applied<br>Catalysis A: General, 2008, 334, 35-43.                                                                                     | 2.2  | 281       |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | MgM (M=Al and Ca) oxides as basic catalysts in transesterification processes. Applied Catalysis A:<br>General, 2008, 347, 162-168.                                                                 | 2.2  | 86        |
| 92  | BIODIESEL PRODUCTION BY HETEROGENEOUS CATALYSIS IN THE PRESENCE OF <font>CaO</font> SUPPORTED ON MESOPOROUS SILICA. , 2008, , .                                                                    |      | 0         |
| 93  | Evaluation of the acid properties of porous zirconium-doped and undoped silica materials. Journal of<br>Solid State Chemistry, 2006, 179, 2182-2189.                                               | 1.4  | 28        |
| 94  | Hydrogenation of tetralin over mixed PtMo supported on zirconium doped mesoporous silica: Use of polynuclear organometallic precursors. Journal of Molecular Catalysis A, 2006, 252, 31-39.        | 4.8  | 12        |
| 95  | Gas-phase hydrogenation of acetonitrile over Pt and Pt–Pd supported on mesoporous solids:<br>influence of the metallic precursor. Applied Catalysis A: General, 2005, 288, 34-42.                  | 2.2  | 27        |
| 96  | Influence of the metallic precursor in the hydrogenation of tetralin over Pd–Pt supported zirconium<br>doped mesoporous silica. Green Chemistry, 2005, 7, 793.                                     | 4.6  | 16        |
| 97  | Superficial characterization and hydroconversion of tetralin over NiW sulfide catalysts supported on zirconium doped mesoporous silica. Applied Catalysis A: General, 2004, 262, 111-120.          | 2.2  | 20        |
| 98  | A new low-cost synthetic route to obtain zirconium containing mesoporous silica. Microporous and Mesoporous Materials, 2004, 75, 23-32.                                                            | 2.2  | 53        |
| 99  | Nickel supported on porous silica as catalysts for the gas-phase hydrogenation of acetonitrile.<br>Journal of Catalysis, 2004, 225, 479-488.                                                       | 3.1  | 49        |
| 100 | Hydrogenation and ring opening of tetralin on noble metal supported on zirconium doped mesoporous silica catalysts. Applied Catalysis A: General, 2004, 260, 9-18.                                 | 2.2  | 52        |
| 101 | Effects of preparation method and sulfur poisoning on the hydrogenation and ring opening of tetralin on NiW/zirconium-doped mesoporous silica catalysts. Journal of Catalysis, 2003, 220, 457-467. | 3.1  | 28        |
| 102 | Textural and structural properties and surface acidity characterization of mesoporous silica-zirconia molecular sieves. Journal of Solid State Chemistry, 2003, 175, 159-169.                      | 1.4  | 138       |
| 103 | Gas-phase hydrogenation of acetonitrile on zirconium-doped mesoporous silica-supported nickel catalysts. Journal of Molecular Catalysis A, 2003, 193, 185-196.                                     | 4.8  | 27        |
| 104 | Nickel-impregnated zirconium-doped mesoporous molecular sieves as catalysts for the hydrogenation and ring-opening of tetralin. Applied Catalysis A: General, 2003, 240, 83-94.                    | 2.2  | 40        |
| 105 | Hydrogenation and Ring Opening of Tetralin on Supported Nickel Zirconium-Doped Mesoporous Silica<br>Catalysts. Influence of the Nickel Precursor. Langmuir, 2003, 19, 4985-4991.                   | 1.6  | 60        |
| 106 | Nickel oxide supported on zirconium-doped mesoporous silica for selective catalytic reduction of NO with NH3. Journal of Materials Chemistry, 2002, 12, 3331-3336.                                 | 6.7  | 35        |
| 107 | Cobalt-based alumina pillared zirconium phosphate catalysts for the selective catalytic reduction of NO by propane. Chemosphere, 2002, 48, 467-474.                                                | 4.2  | 12        |
| 108 | Cobalt supported on zirconium doped mesoporous silica: a selective catalyst for reduction of NO with ammonia at low temperatures. Applied Catalysis B: Environmental, 2002, 38, 51-60.             | 10.8 | 33        |

| #   | Article                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Liquid phase acetophenone hydrogenation on Ru/Cr/B catalysts supported on silica. Journal of<br>Molecular Catalysis A, 2002, 188, 133-139.                                                           | 4.8  | 43        |
| 110 | Title is missing!. Catalysis Letters, 2002, 82, 205-212.                                                                                                                                             | 1.4  | 16        |
| 111 | Copper supported on mixed alumina/gallium oxide pillared α-tin phosphate for De-NOx applications.<br>Green Chemistry, 2001, 3, 289-295.                                                              | 4.6  | 9         |
| 112 | Synthesis and Characterization of Novel Alumina-Pillared Î <sup>3</sup> -Zirconium Phosphates. Langmuir, 2001, 17, 3769-3775.                                                                        | 1.6  | 8         |
| 113 | Gas-phase hydrogenation of acetonitrile over nickel supported on alumina- and mixed alumina/gallium<br>oxide-pillared tin phosphate catalysts. Journal of Molecular Catalysis A, 2001, 168, 279-287. | 4.8  | 16        |
| 114 | Chromium oxide supported on zirconium- and lanthanum-doped mesoporous silica for oxidative dehydrogenation of propane. Applied Catalysis A: General, 2001, 218, 295-306.                             | 2.2  | 72        |
| 115 | Si/Zr mesoporous catalysts for the vapour phase synthesis of alkylindoles. Applied Catalysis A:<br>General, 2001, 220, 105-112.                                                                      | 2.2  | 28        |
| 116 | Hydrogenation and Ring-Opening of Tetralin on Ni and NiMo Supported on Alumina-Pillared α-Zirconium<br>Phosphate Catalysts. A Thiotolerance Study. Journal of Catalysis, 2001, 203, 122-132.         | 3.1  | 61        |
| 117 | Selective catalytic reduction of NO by propane on copper containing alumina pillared α-zirconium phosphates. Applied Catalysis B: Environmental, 2001, 29, 1-11.                                     | 10.8 | 30        |
| 118 | Chromium-impregnated mesoporous silica as catalysts for the oxidative dehydrogenation of propane.<br>Studies in Surface Science and Catalysis, 2000, 130, 1865-1870.                                 | 1.5  | 3         |
| 119 | Title is missing!. Catalysis Letters, 2000, 64, 209-214.                                                                                                                                             | 1.4  | 46        |
| 120 | Title is missing!. Catalysis Letters, 2000, 68, 67-73.                                                                                                                                               | 1.4  | 71        |
| 121 | High surface area mesoporous titanium phosphate: synthesis and surface acidity determination.<br>Journal of Materials Chemistry, 2000, 10, 1957-1963.                                                | 6.7  | 102       |
| 122 | INFLUENCE OF SURFACTANT REMOVAL PROCEDURE ON STRUCTURAL, TEXTURAL AND ACID PROPERTIES OF A MESOPOROUS FORM OF ZIRCONIUM PHOSPHATE. Phosphorus Research Bulletin, 1999, 10, 460-465.                  | 0.1  | 0         |
| 123 | Proton conductivity of mesoporous MCM type of zirconium and titanium phosphates. Solid State lonics, 1999, 125, 407-410.                                                                             | 1.3  | 36        |
| 124 | Sorption kinetics and diffusion of cadmium in calcium hydroxyapatites. Solid State Sciences, 1999, 1, 71-83.                                                                                         | 1.5  | 53        |
| 125 | Insertion of Gallium Oxide into α-Titanium Phosphate Using a Surfactant Expanded Phase as Precursor.<br>Journal of Solid State Chemistry, 1999, 147, 664-670.                                        | 1.4  | 5         |
| 126 | Calcium hydroxyapatites: evaluation of sorption properties for cadmium ions in aqueous solution.<br>Journal of Materials Science, 1998, 33, 5433-5439.                                               | 1.7  | 45        |

| #   | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Surfactant-Assisted Synthesis of a Mesoporous Form of Zirconium Phosphate with Acidic Properties.<br>Advanced Materials, 1998, 10, 812-815.                                                                      | 11.1 | 138       |
| 128 | Propane dehydrogenation on mesoporous chromium-containing silica catalysts. Studies in Surface Science and Catalysis, 1998, , 903-910.                                                                           | 1.5  | 5         |
| 129 | Factors Influencing on the Surface Properties of Chromia-Pillared α-Zirconium Phosphate Materials.<br>Langmuir, 1998, 14, 4017-4024.                                                                             | 1.6  | 13        |
| 130 | Porous Fluorinated Aluminum and Mixed Gallium/Aluminum Oxide Pillared Tin Phosphate Materials with Acid Properties. Journal of Physical Chemistry B, 1998, 102, 1672-1678.                                       | 1.2  | 11        |
| 131 | Sol-gel synthesis of surfactant-expanded layered titanium phosphates. Molecular Crystals and Liquid<br>Crystals, 1998, 311, 257-262.                                                                             | 0.3  | 4         |
| 132 | Solâ``Gel Synthesis of Dodecyltrimethylammonium-Expanded Zirconium Phosphate and Its Application to the Preparation of Acidic Porous Oligomeric Gallium(III)-Exchanged Materials. Langmuir, 1997, 13, 2857-2862. | 1.6  | 28        |
| 133 | Surface characterisation of zirconium-doped mesoporous silica. Chemical Communications, 1997, , 431-432.                                                                                                         | 2.2  | 92        |
| 134 | Dielectric properties of Li+-exchanged mixed Feî—,Cr oxide pillared phosphate. Journal of Alloys and Compounds, 1997, 262-263, 281-286.                                                                          | 2.8  | 2         |
| 135 | Electrical conductivity of chromia-pillared α-zirconium phosphate. Journal of Alloys and Compounds, 1997, 262-263, 287-291.                                                                                      | 2.8  | 1         |
| 136 | Nanostructured Inorganically Pillared Layered Metal(IV) Phosphates. Chemistry of Materials, 1996, 8,<br>1758-1769.                                                                                               | 3.2  | 98        |
| 137 | Quantum size effects induced by confinement of C60 in MCM41. Solid State Communications, 1996, 100, 237-240.                                                                                                     | 0.9  | 23        |
| 138 | MAS-NMR Study of Pillared .alphaTin and .alphaZirconium Phosphates with Aluminum Oligomers. The<br>Journal of Physical Chemistry, 1995, 99, 1491-1497.                                                           | 2.9  | 18        |
| 139 | Two-Dimensional Nanocomposites: Alternating Inorganic-Organic Polymer Layers in Zirconium<br>Phosphate. Chemistry of Materials, 1995, 7, 562-571.                                                                | 3.2  | 89        |
| 140 | Chromia Pillaring in .alphaZirconium Phosphate: A Structural Investigation Using X-Ray Absorption Spectroscopy. Inorganic Chemistry, 1995, 34, 4611-4617.                                                        | 1.9  | 32        |
| 141 | Synthesis Optimization and Crystal Structures of Layered Metal(IV) Hydrogen Phosphates,<br>.alphaM(HPO4)2.cntdot.H2O (M = Ti, Sn, Pb). Inorganic Chemistry, 1995, 34, 893-899.                                   | 1.9  | 92        |
| 142 | Hopping conductivity in lithium-exchanged pillared layered tin phosphate materialsâ~†. Solid State Ionics,<br>1994, 73, 67-73.                                                                                   | 1.3  | 7         |
| 143 | Mixed alumina–chromia pillared layered α-zirconium phosphate. Journal of Materials Chemistry, 1994, 4,<br>179-184.                                                                                               | 6.7  | 19        |
| 144 | Nano/nanocomposite systems: in situ growth of particles and clusters of semiconductor metal<br>sulfides in porous silica-pillared layered phosphates. Journal of Materials Chemistry, 1994, 4, 189-195.          | 6.7  | 24        |

9

| #   | Article                                                                                                                                                                                                             | IF           | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 145 | Electrical Conductivity in Mesoporous and Microporous Pillared Layered Phosphate Structures.<br>Materials Research Society Symposia Proceedings, 1994, 371, 175.                                                    | 0.1          | 1         |
| 146 | Electrical conductivity of alumina-pillared $\hat{l}\pm$ -tin phosphate. Solid State Ionics, 1993, 61, 139-142.                                                                                                     | 1.3          | 9         |
| 147 | Layered basic copper anion exchangers: chemical characterisation and X-ray absorption study. Journal of Materials Chemistry, 1993, 3, 303-307.                                                                      | 6.7          | 30        |
| 148 | Pillared Clays Prepared from the Reaction of Chromium Acetate with Montmorillonite. Clays and Clay<br>Minerals, 1993, 41, 328-334.                                                                                  | 0.6          | 27        |
| 149 | Oxide-Pillared Layered α-Metal(IV) Hydrogen Phosphates. , 1993, , 273-287.                                                                                                                                          |              | 4         |
| 150 | Ion Transport in Alumina-Pillared Zirconium Phosphate. Materials Research Society Symposia<br>Proceedings, 1992, 286, 347.                                                                                          | 0.1          | 1         |
| 151 | Surface chemistry of chromia-pillared tin and zirconium phosphate materials: an X-ray photoelectron spectroscopic study. Journal of Materials Chemistry, 1992, 2, 1175.                                             | 6.7          | 22        |
| 152 | Formation of polypyrrole chains in alumina and chromia-pillared layered phosphates. Journal of<br>Inclusion Phenomena and Macrocyclic Chemistry, 1992, 14, 327-337.                                                 | 1.6          | 14        |
| 153 | Porous chromia-pillared α-zirconium phosphate materials prepared via colloid methods. Journal of<br>Materials Chemistry, 1991, 1, 739-746.                                                                          | 6.7          | 47        |
| 154 | Porous cross-linked materials formed by oligomeric aluminium hydroxides and α-tin phosphate. Journal of Materials Chemistry, 1991, 1, 319-326.                                                                      | 6.7          | 39        |
| 155 | Porous chromia-pillared α-tin phosphate materials. Journal of Solid State Chemistry, 1991, 94, 368-380.                                                                                                             | 1.4          | 35        |
| 156 | Sur l'orientation de molécules basiques dans l'espace interlamellaire du phosphate d'étain. Journa<br>Chimie Physique Et De Physico-Chimie Biologique, 1991, 88, 2007-2012.                                         | al De<br>0.2 | 2         |
| 157 | Intercalates of ?-Sn(HPO4)2ï;½H2O with aromatic and heterocyclic bases and some comments on their orientation in the interlayer region. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1990, 9, 207-217. | 1.6          | 2         |
| 158 | New Cross-Linked Layered Tin Phosphate Exchangers. , 1990, , 95-101.                                                                                                                                                |              | 5         |
| 159 | The first high specific surface area, pillared, layered phosphate with a narrow pore size distribution.<br>Journal of the Chemical Society Chemical Communications, 1989, , 751.                                    | 2.0          | 21        |
| 160 | Intercalation of aromatic amines into α-tin(IV) hydrogenphosphate monohydrate. Canadian Journal of<br>Chemistry, 1989, 67, 2095-2101.                                                                               | 0.6          | 10        |