Fabio Squina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6037431/publications.pdf

Version: 2024-02-01

471509 526287 27 921 17 27 citations h-index g-index papers 27 27 27 1366 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Applying biochemical and structural characterization of hydroxycinnamate catabolic enzymes from soil metagenome for lignin valorization strategies. Applied Microbiology and Biotechnology, 2022, 106, 2503-2516.	3.6	5
2	Microbial enrichment and meta-omics analysis identify CAZymes from mangrove sediments with unique properties. Enzyme and Microbial Technology, 2021, 148, 109820.	3.2	9
3	Modified lignin from sugarcane bagasse as an emulsifier in oil-in-water nanoemulsions. Industrial Crops and Products, 2021, 167, 113532.	5.2	14
4	The structure of a prokaryotic feruloyl-CoA hydratase-lyase from a lignin-degrading consortium with high oligomerization stability under extreme pHs. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140344.	2.3	6
5	Designing a cocktail containing redox enzymes to improve hemicellulosic hydrolysate fermentability by microorganisms. Enzyme and Microbial Technology, 2020, 135, 109490.	3.2	14
6	An alkaline active feruloyl-CoA synthetase from soil metagenome as a potential key enzyme for lignin valorization strategies. PLoS ONE, 2019, 14, e0212629.	2.5	7
7	Novel redox-active enzymes for ligninolytic applications revealed from multiomics analyses of Peniophora sp. CBMAI 1063, a laccase hyper-producer strain. Scientific Reports, 2019, 9, 17564.	3.3	24
8	Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. Biotechnology for Biofuels, 2018, 11, 75.	6.2	65
9	Xyloglucan breakdown by endo-xyloglucanase family 74 from Aspergillus fumigatus. Applied Microbiology and Biotechnology, 2017, 101, 2893-2903.	3.6	33
10	A Novel Carbohydrate-binding Module from Sugar Cane Soil Metagenome Featuring Unique Structural and Carbohydrate Affinity Properties. Journal of Biological Chemistry, 2016, 291, 23734-23743.	3.4	18
11	Effect of hemicellulolytic enzymes to improve sugarcane bagasse saccharification and xylooligosaccharides production. Journal of Molecular Catalysis B: Enzymatic, 2016, 131, 36-46.	1.8	38
12	Acidification treatment of lignin from sugarcane bagasse results in fractions of reduced polydispersity and high free-radical scavenging capacity. Industrial Crops and Products, 2016, 83, 94-103.	5.2	40
13	Draft Genome Sequence of the Thermophile Thermus filiformis ATCC 43280, Producer of Carotenoid-(Di)glucoside-Branched Fatty Acid (Di)esters and Source of Hyperthermostable Enzymes of Biotechnological Interest. Genome Announcements, 2015, 3, .	0.8	3
14	A Novel Member of GH16 Family Derived from Sugarcane Soil Metagenome. Applied Biochemistry and Biotechnology, 2015, 177, 304-317.	2.9	14
15	Comparative analysis of three hyperthermophilic GH1 and GH3 family members with industrial potential. New Biotechnology, 2015, 32, 13-20.	4.4	38
16	Understanding the function of conserved variations in the catalytic loops of fungal glycoside hydrolase family 12. Biotechnology and Bioengineering, 2014, 111, 1494-1505.	3.3	15
17	Development of hemicellulolytic enzyme mixtures for plant biomass deconstruction on target biotechnological applications. Applied Microbiology and Biotechnology, 2014, 98, 8513-8525.	3.6	44
18	Characterization of a Hexameric Exo-Acting GH51 \hat{l} ±-l-Arabinofuranosidase from the Mesophilic Bacillus subtilis. Molecular Biotechnology, 2013, 55, 260-267.	2.4	12

#	ARTICLE	IF	CITATION
19	Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Applied Microbiology and Biotechnology, 2013, 97, 6759-6767.	3.6	49
20	Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and \hat{l} ±-l-arabinofuranosidase. Bioresource Technology, 2013, 131, 500-507.	9.6	81
21	Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 395-411.	1.2	139
22	Development and Biotechnological Application of a Novel Endoxylanase Family GH10 Identified from Sugarcane Soil Metagenome. PLoS ONE, 2013, 8, e70014.	2.5	28
23	The Penicillium echinulatum Secretome on Sugar Cane Bagasse. PLoS ONE, 2012, 7, e50571.	2.5	70
24	Insights on How the Activity of an Endoglucanase Is Affected by Physical Properties of Insoluble Celluloses. Journal of Physical Chemistry B, 2012, 116, 6128-6136.	2.6	27
25	High-yield secretion of multiple client proteins in Aspergillus. Enzyme and Microbial Technology, 2012, 51, 100-106.	3.2	72
26	Substrate cleavage pattern, biophysical characterization and low-resolution structure of a novel hyperthermostable arabinanase from Thermotoga petrophila. Biochemical and Biophysical Research Communications, 2010, 399, 505-511.	2.1	23
27	Xylan decomposition by Aspergillus clavatus endo-xylanase. Protein Expression and Purification, 2009, 68, 65-71.	1.3	33