Fabio Squina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6037431/publications.pdf

Version: 2024-02-01

471509 526287 27 921 17 27 citations h-index g-index papers 27 27 27 1366 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 395-411.	1.2	139
2	Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and $\hat{l}\pm l$ -arabinofuranosidase. Bioresource Technology, 2013, 131, 500-507.	9.6	81
3	High-yield secretion of multiple client proteins in Aspergillus. Enzyme and Microbial Technology, 2012, 51, 100-106.	3.2	72
4	The Penicillium echinulatum Secretome on Sugar Cane Bagasse. PLoS ONE, 2012, 7, e50571.	2.5	70
5	Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. Biotechnology for Biofuels, 2018, 11, 75.	6.2	65
6	Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Applied Microbiology and Biotechnology, 2013, 97, 6759-6767.	3.6	49
7	Development of hemicellulolytic enzyme mixtures for plant biomass deconstruction on target biotechnological applications. Applied Microbiology and Biotechnology, 2014, 98, 8513-8525.	3.6	44
8	Acidification treatment of lignin from sugarcane bagasse results in fractions of reduced polydispersity and high free-radical scavenging capacity. Industrial Crops and Products, 2016, 83, 94-103.	5. 2	40
9	Comparative analysis of three hyperthermophilic GH1 and GH3 family members with industrial potential. New Biotechnology, 2015, 32, 13-20.	4.4	38
10	Effect of hemicellulolytic enzymes to improve sugarcane bagasse saccharification and xylooligosaccharides production. Journal of Molecular Catalysis B: Enzymatic, 2016, 131, 36-46.	1.8	38
11	Xylan decomposition by Aspergillus clavatus endo-xylanase. Protein Expression and Purification, 2009, 68, 65-71.	1.3	33
12	Xyloglucan breakdown by endo-xyloglucanase family 74 from Aspergillus fumigatus. Applied Microbiology and Biotechnology, 2017, 101, 2893-2903.	3.6	33
13	Development and Biotechnological Application of a Novel Endoxylanase Family GH10 Identified from Sugarcane Soil Metagenome. PLoS ONE, 2013, 8, e70014.	2.5	28
14	Insights on How the Activity of an Endoglucanase Is Affected by Physical Properties of Insoluble Celluloses. Journal of Physical Chemistry B, 2012, 116, 6128-6136.	2.6	27
15	Novel redox-active enzymes for ligninolytic applications revealed from multiomics analyses of Peniophora sp. CBMAI 1063, a laccase hyper-producer strain. Scientific Reports, 2019, 9, 17564.	3.3	24
16	Substrate cleavage pattern, biophysical characterization and low-resolution structure of a novel hyperthermostable arabinanase from Thermotoga petrophila. Biochemical and Biophysical Research Communications, 2010, 399, 505-511.	2.1	23
17	A Novel Carbohydrate-binding Module from Sugar Cane Soil Metagenome Featuring Unique Structural and Carbohydrate Affinity Properties. Journal of Biological Chemistry, 2016, 291, 23734-23743.	3.4	18
18	Understanding the function of conserved variations in the catalytic loops of fungal glycoside hydrolase family 12. Biotechnology and Bioengineering, 2014, 111, 1494-1505.	3.3	15

#	ARTICLE	IF	CITATION
19	A Novel Member of GH16 Family Derived from Sugarcane Soil Metagenome. Applied Biochemistry and Biotechnology, 2015, 177, 304-317.	2.9	14
20	Designing a cocktail containing redox enzymes to improve hemicellulosic hydrolysate fermentability by microorganisms. Enzyme and Microbial Technology, 2020, 135, 109490.	3.2	14
21	Modified lignin from sugarcane bagasse as an emulsifier in oil-in-water nanoemulsions. Industrial Crops and Products, 2021, 167, 113532.	5. 2	14
22	Characterization of a Hexameric Exo-Acting GH51 \hat{l} ±- l -Arabinofuranosidase from the Mesophilic Bacillus subtilis. Molecular Biotechnology, 2013, 55, 260-267.	2.4	12
23	Microbial enrichment and meta-omics analysis identify CAZymes from mangrove sediments with unique properties. Enzyme and Microbial Technology, 2021, 148, 109820.	3.2	9
24	An alkaline active feruloyl-CoA synthetase from soil metagenome as a potential key enzyme for lignin valorization strategies. PLoS ONE, 2019, 14, e0212629.	2.5	7
25	The structure of a prokaryotic feruloyl-CoA hydratase-lyase from a lignin-degrading consortium with high oligomerization stability under extreme pHs. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140344.	2.3	6
26	Applying biochemical and structural characterization of hydroxycinnamate catabolic enzymes from soil metagenome for lignin valorization strategies. Applied Microbiology and Biotechnology, 2022, 106, 2503-2516.	3.6	5
27	Draft Genome Sequence of the Thermophile Thermus filiformis ATCC 43280, Producer of Carotenoid-(Di)glucoside-Branched Fatty Acid (Di)esters and Source of Hyperthermostable Enzymes of Biotechnological Interest. Genome Announcements, 2015, 3, .	0.8	3