
Mojtaba Lezgy-Nazargah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6037213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A finite element model for static analysis of curved thin-walled beams based on the concept of equivalent layered composite cross section. Mechanics of Advanced Materials and Structures, 2022, 29, 1020-1033.	1.5	19
2	Nonlinear finite element analysis of reinforced concrete columns: Evaluation of different modeling approaches for considering stirrup confinement effects. Structural Concrete, 2022, 23, 2820-2836.	1.5	4
3	Assessment of four-variable refined shear deformation theory for low-velocity impact analysis of curved sandwich beams. European Journal of Mechanics, A/Solids, 2022, 94, 104604.	2.1	5
4	Evaluation of mechanical properties of fiber reinforced composites filled with hollow spheres: A micromechanics approach. Journal of Composite Materials, 2021, 55, 331-345.	1.2	7
5	Buckling, post-buckling and geometrically nonlinear analysis of thin-walled beams using a hypothetical layered composite cross-sectional model. Acta Mechanica, 2021, 232, 2733-2750.	1.1	14
6	An analytical investigation of elastic–plastic behaviors of 3D warp and woof auxetic structures. International Journal of Mechanics and Materials in Design, 2021, 17, 545-561.	1.7	21
7	A quasi-3D finite element model for the analysis of thin-walled beams under axial–flexural–torsional loads. Thin-Walled Structures, 2021, 164, 107811.	2.7	16
8	Predicting the mechanical properties of cement mortar using the support vector machine approach. Construction and Building Materials, 2021, 291, 123396.	3.2	33
9	<i>H</i> _{<i>â^ž</i>} control method for seismically excited building structures with time-delay. JVC/Journal of Vibration and Control, 2020, 26, 865-884.	1.5	8
10	A four-variable global–local shear deformation theory for the analysis of deep curved laminated composite beams. Acta Mechanica, 2020, 231, 1403-1434.	1.1	16
11	A penalty-based multifiber finite element model for coupled bending and torsional-warping analysis of composite beams. European Journal of Mechanics, A/Solids, 2020, 80, 103915.	2.1	7
12	A 1D nonlinear finite element model for analysis of composite foam-insulated concrete sandwich panels. Composite Structures, 2019, 210, 663-675.	3.1	9
13	Mechanical, thermal and microstructural properties of epoxy-OAT composites. Construction and Building Materials, 2019, 197, 12-20.	3.2	16
14	Design and fabrication of a new fiber-cement-piezoelectric composite sensor for measurement of inner stress in concrete structures. Archives of Civil and Mechanical Engineering, 2019, 19, 405-416.	1.9	21
15	A sinus shear deformation model for static analysis of composite steel-concrete beams and twin-girder decks including shear lag and interfacial slip effects. Thin-Walled Structures, 2019, 134, 61-70.	2.7	23
16	A new mixed-field theory for bending and vibration analysis of multi-layered composite plate. Archives of Civil and Mechanical Engineering, 2018, 18, 818-832.	1.9	24
17	An efficient materially nonlinear finite element model for reinforced concrete beams based on layered global-local kinematics. Acta Mechanica, 2018, 229, 1429-1449.	1.1	12
18	Effective coupled thermo-electro-mechanical properties of piezoelectric structural fiber composites: A micromechanical approach. Journal of Intelligent Material Systems and Structures, 2018, 29, 496-513.	1.4	13

#	Article	IF	CITATIONS
19	Predicting the mechanical properties of ordinary concrete and nano-silica concrete using micromechanical methods. Sadhana - Academy Proceedings in Engineering Sciences, 2018, 43, 1.	0.8	10
20	Reduced modal state-space approach for low-velocity impact analysis of sandwich beams. Composite Structures, 2018, 206, 762-773.	3.1	6
21	Optimum material gradient composition for the functionally graded piezoelectric beams. International Journal of Engineering, Science and Technology, 2018, 5, 80-99.	0.3	3
22	Pseudo-spectral method for mechanical buckling analysis of circular plates with variable thickness made of bimorph FGMs. Journal of Numerical Methods in Civil Engineering, 2018, 3, 57-69.	0.3	0
23	An exact Peano Series solution for bending analysis of imperfect layered functionally graded neutral magneto-electro-elastic plates resting on elastic foundations. Mechanics of Advanced Materials and Structures, 2017, 24, 183-199.	1.5	25
24	A generalized layered global-local beam theory for elasto-plastic analysis of thin-walled members. Thin-Walled Structures, 2017, 115, 48-57.	2.7	14
25	Assessment of refined high-order global–local theory for progressive failure analysis of laminated composite beams. Acta Mechanica, 2017, 228, 1923-1940.	1.1	18
26	Assessment of FGPM shunt damping for vibration reduction of laminated composite beams. Journal of Sound and Vibration, 2017, 389, 101-118.	2.1	10
27	A high-performance parametrized mixed finite element model for bending and vibration analyses of thick plates. Acta Mechanica, 2016, 227, 3429-3450.	1.1	25
28	Efficient coupled refined finite element for dynamic analysis of sandwich beams containing embedded shear-mode piezoelectric layers. Mechanics of Advanced Materials and Structures, 2016, 23, 337-352.	1.5	15
29	A three-dimensional Peano series solution for the vibration of functionally graded piezoelectric laminates in cylindrical bending. Scientia Iranica, 2016, 23, 788-801.	0.3	8
30	Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach. Aerospace Science and Technology, 2015, 45, 154-164.	2.5	86
31	A Micromechanics Model for Effective Coupled Thermo-Electro-Elastic Properties of Macro Fiber Composites with Interdigitated Electrodes. Journal of Mechanics, 2015, 31, 183-199.	0.7	9
32	NURBS-based isogeometric analysis of laminated composite beams using refined sinus model. European Journal of Mechanics, A/Solids, 2015, 53, 34-47.	2.1	29
33	Analysis of composite steel-concrete beams using a refined high-order beam theory. Steel and Composite Structures, 2015, 18, 1353-1368.	1.3	12
34	An isogeometric approach for the analysis of composite steel–concrete beams. Thin-Walled Structures, 2014, 84, 406-415.	2.7	22
35	Coupled refined layerwise theory for dynamic free and forced response of piezoelectric laminated composite and sandwich beams. Meccanica, 2013, 48, 1479-1500.	1.2	32
36	A finite element model based on coupled refined high-order global-local theory for static analysis of electromechanical embedded shear-mode piezoelectric sandwich composite beams with various widths. Thin-Walled Structures, 2013, 72, 139-163.	2.7	26

#	Article	IF	CITATIONS
37	An efficient finite element model for static and dynamic analyses of functionally graded piezoelectric beams. Composite Structures, 2013, 104, 71-84.	3.1	74
38	A coupled refined high-order global-local theory and finite element model for static electromechanical response of smart multilayered/sandwich beams. Archive of Applied Mechanics, 2012, 82, 1709-1752.	1.2	35
39	A refined high-order global-local theory for finite element bending and vibration analyses of laminated composite beams. Acta Mechanica, 2011, 217, 219-242.	1.1	59
40	A refined mixed global–local finite element model for bending analysis of multi-layered rectangular composite beams with small widths. Thin-Walled Structures, 2011, 49, 351-362.	2.7	29
41	A Refined Sinus Finite Element Model for the Analysis of Piezoelectric-Laminated Beams. Journal of Intelligent Material Systems and Structures, 2011, 22, 203-219.	1.4	38
42	A Finite Element Model for Composite Beams with Piezoelectric Layers Using a Sinus Model. Journal of Mechanics, 2010, 26, 249-258.	0.7	16
43	Assessment of velocity-acceleration feedback in optimal control of smart piezoelectric beams. Smart Structures and Systems, 2010, 6, 921-938.	1.9	17