
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6036866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption of Water on Activated Carbons:Â A Molecular Simulation Study. The Journal of Physical Chemistry, 1996, 100, 1189-1196.	2.9	353
2	Thermodynamic behaviour of homonuclear and heteronuclear Lennard-Jones chains with association sites from simulation and theory. Molecular Physics, 1997, 92, 135-150.	0.8	333
3	Phase equilibria and critical behavior of squareâ€well fluids of variable width by Gibbs ensemble Monte Carlo simulation. Journal of Chemical Physics, 1992, 96, 2296-2305.	1.2	307
4	Prediction of Binary and Ternary Diagrams Using the Statistical Associating Fluid Theory (SAFT) Equation of State. Industrial & Engineering Chemistry Research, 1998, 37, 660-674.	1.8	248
5	Applications of fly ash for CO2 capture, utilization, and storage. Journal of CO2 Utilization, 2019, 29, 82-102.	3.3	234
6	Modeling ionic liquids and the solubility of gases in them: Recent advances and perspectives. Fluid Phase Equilibria, 2010, 294, 15-30.	1.4	222
7	Transport Properties of the Ionic Liquid 1-Ethyl-3-Methylimidazolium Chloride from Equilibrium Molecular Dynamics Simulation. The Effect of Temperature. Journal of Physical Chemistry B, 2006, 110, 14426-14435.	1.2	188
8	Vaporâ^'Liquid Equilibria and Critical Behavior of Heavy n-Alkanes Using Transferable Parameters from the Soft-SAFT Equation of State. Industrial & Engineering Chemistry Research, 2001, 40, 2532-2543.	1.8	143
9	Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere, 2021, 282, 131111.	4.2	135
10	Capturing the Solubility Behavior of CO ₂ in Ionic Liquids by a Simple Model. Journal of Physical Chemistry C, 2007, 111, 16028-16034.	1.5	126
11	Systematic evaluation of materials for post-combustion CO 2 capture in a Temperature Swing Adsorption process. Chemical Engineering Journal, 2016, 284, 438-447.	6.6	118
12	Thermodynamic properties of Lennard-Jones chain molecules: Renormalization-group corrections to a modified statistical associating fluid theory. Journal of Chemical Physics, 2004, 121, 10715-10724.	1.2	115
13	Global Fluid Phase Equilibria and Critical Phenomena of Selected Mixtures Using the Crossover Soft-SAFT Equation. Journal of Physical Chemistry B, 2006, 110, 1350-1362.	1.2	114
14	Modeling the Solubility Behavior of CO ₂ , H ₂ , and Xe in [C _{<i>n</i>} -mim][Tf ₂ N] Ionic Liquids. Journal of Physical Chemistry B, 2008, 112, 15398-15406.	1.2	113
15	Vaporâ^'Liquid Equilibrium of Carbon Dioxideâ^'Perfluoroalkane Mixtures:  Experimental Data and SAFT Modeling. Industrial & Engineering Chemistry Research, 2006, 45, 2341-2350.	1.8	107
16	Capturing the Solubility Minima of <i>n</i> -Alkanes in Water by Soft-SAFT. Journal of Physical Chemistry B, 2009, 113, 7621-7630.	1.2	106
17	Modeling Complex Associating Mixtures with [C _{<i>n</i>} -mim][Tf ₂ N] Ionic Liquids: Predictions from the Soft-SAFT Equation. Journal of Physical Chemistry B, 2011, 115, 4387-4398.	1.2	99
18	Interfacial properties of Lennard-Jones chains by direct simulation and density gradient theory. Journal of Chemical Physics, 2004, 121, 11395.	1.2	96

#	Article	IF	CITATIONS
19	Prediction of Thermodynamic Derivative Properties of Pure Fluids through the Soft-SAFT Equation of State. Journal of Physical Chemistry B, 2006, 110, 11427-11437.	1.2	96
20	Physical synthesis and characterization of activated carbon from date seeds for CO2 capture. Journal of Environmental Chemical Engineering, 2018, 6, 4245-4252.	3.3	96
21	Free-Volume Theory Coupled with Soft-SAFT for Viscosity Calculations: Comparison with Molecular Simulation and Experimental Data. Journal of Physical Chemistry B, 2013, 117, 8159-8171.	1.2	95
22	Synthesis and characterization of activated carbon from biomass date seeds for carbon dioxide adsorption. Journal of Environmental Chemical Engineering, 2020, 8, 104257.	3.3	94
23	Predicting the density and viscosity of hydrophobic eutectic solvents: towards the development of sustainable solvents. Green Chemistry, 2020, 22, 8511-8530.	4.6	84
24	Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents. Journal of Molecular Liquids, 2020, 298, 112183.	2.3	83
25	Some issues on the calculation of interfacial properties by molecular simulation. Journal of Chemical Physics, 2004, 121, 8611.	1.2	78
26	Phase and interface behaviors in type-I and type-V Lennard-Jones mixtures: Theory and simulations. Journal of Chemical Physics, 2005, 123, 034505.	1.2	77
27	Solubility of hydrogen in heavyn-alkanes: Experiments and saft modeling. AICHE Journal, 2003, 49, 3260-3269.	1.8	76
28	Energetic evaluation of swing adsorption processes for CO 2 capture in selected MOFs and zeolites: Effect of impurities. Chemical Engineering Journal, 2018, 342, 458-473.	6.6	76
29	SAFT Modeling of the Solubility of Gases in Perfluoroalkanes. Journal of Physical Chemistry B, 2004, 108, 1450-1457.	1.2	75
30	Flexible operation of solvent regeneration systems for CO2 capture processes using advanced control techniques: Towards operational cost minimisation. International Journal of Greenhouse Gas Control, 2012, 11, 236-250.	2.3	75
31	Influence of the Concentration of CO ₂ and SO ₂ on the Absorption of CO ₂ by a Lithium Orthosilicate-Based Absorbent. Environmental Science & Technology, 2011, 45, 7083-7088.	4.6	69
32	Current and future perspectives on catalytic-based integrated carbon capture and utilization. Science of the Total Environment, 2021, 790, 148081.	3.9	67
33	Review and new insights into the application of molecular-based equations of state to water and aqueous solutions. Fluid Phase Equilibria, 2016, 416, 150-173.	1.4	66
34	Effect of the flexibility and the anion in the structural and transport properties of ethyl-methyl-imidazolium ionic liquids. Fluid Phase Equilibria, 2007, 256, 62-69.	1.4	65
35	New Experimental Density Data and Soft-SAFT Models of Alkylimidazolium ([C _{<i>n</i>} C ₁ im] ⁺) Chloride (Cl [–]), Methylsulfate ([MeSO ₄] ^{â°`}), and Dimethylphosphate ([Me ₂ PO ₄] ^{â°`}) Based Ionic Liquids. Journal of Physical Chemistry B,	1.2	65
36	2014, 118, 6206-6221. Densities and Vapor Pressures of Highly Fluorinated Compounds. Journal of Chemical & Engineering Data, 2005, 50, 1328-1333.	1.0	64

#	Article	IF	CITATIONS
37	Transport Properties of Mixtures by the Soft-SAFT + Free-Volume Theory: Application to Mixtures of <i>n</i> -Alkanes and Hydrofluorocarbons. Journal of Physical Chemistry B, 2013, 117, 5195-5205.	1.2	64
38	Computational study of ibuprofen removal from water by adsorption in realistic activated carbons. Journal of Colloid and Interface Science, 2017, 498, 323-334.	5.0	64
39	Simultaneous prediction of interfacial tension and phase equilibria in binary mixtures. Fluid Phase Equilibria, 2005, 227, 225-238.	1.4	63
40	Critical behavior and partial miscibility phenomena in binary mixtures of hydrocarbons by the statistical associating fluid theory. Journal of Chemical Physics, 1998, 109, 7405-7413.	1.2	62
41	Phase equilibria, surface tensions and heat capacities of hydrofluorocarbons and their mixtures including the critical region. Journal of Supercritical Fluids, 2010, 55, 755-768.	1.6	62
42	Modeling the Absorption of Weak Electrolytes and Acid Gases with Ionic Liquids Using the Soft-SAFT Approach. Journal of Physical Chemistry B, 2012, 116, 7709-7718.	1.2	62
43	Surface Tension of Binary Mixtures of 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids: Experimental Measurements and Soft-SAFT Modeling. Journal of Physical Chemistry B, 2012, 116, 12133-12141.	1.2	61
44	Effect of high carbon dioxide atmosphere packaging and soluble gas stabilization pre-treatment on the shelf-life and quality of chicken drumsticks. Meat Science, 2013, 94, 1-8.	2.7	59
45	Next generation of low global warming potential refrigerants: Thermodynamic properties molecular modeling. AICHE Journal, 2018, 64, 250-262.	1.8	58
46	Engineering the TiO2 outermost layers using magnesium for carbon dioxide photoreduction. Applied Catalysis B: Environmental, 2014, 150-151, 57-62.	10.8	57
47	Accurate description of thermophysical properties of Tetraalkylammonium Chloride Deep Eutectic Solvents with the soft-SAFT equation of state. Fluid Phase Equilibria, 2017, 448, 81-93.	1.4	56
48	Second-order thermodynamic derivative properties of selected mixtures by the soft-SAFT equation of state. Fluid Phase Equilibria, 2006, 248, 115-122.	1.4	55
49	Modeling the [NTf ₂] Pyridinium Ionic Liquids Family and Their Mixtures with the Soft Statistical Associating Fluid Theory Equation of State. Journal of Physical Chemistry B, 2012, 116, 9089-9100.	1.2	55
50	Phase Equilibria of Ethylene Glycol Oligomers and Their Mixtures. Industrial & Engineering Chemistry Research, 2005, 44, 7027-7037.	1.8	54
51	Microporous carbon adsorbents with high CO2 capacities for industrial applications. Physical Chemistry Chemical Physics, 2011, 13, 16063.	1.3	53
52	Transport properties of HFC and HFO based refrigerants using an excess entropy scaling approach. Journal of Supercritical Fluids, 2018, 131, 106-116.	1.6	52
53	Performance of non-aqueous amine hybrid solvents mixtures for CO2 capture: A study using a molecular-based model. Journal of CO2 Utilization, 2020, 35, 126-144.	3.3	52
54	Phase equilibria, critical behavior and derivative properties of selected n-alkane/n-alkane and n-alkane/1-alkanol mixtures by the crossover soft-SAFT equation of state. Journal of Supercritical Fluids, 2007, 41, 204-216.	1.6	51

#	Article	IF	CITATIONS
55	Thermodynamic characterization of pure perfluoroalkanes, including interfacial and second order derivative properties, using the crossover soft-SAFT EoS. Fluid Phase Equilibria, 2009, 286, 134-143.	1.4	50
56	Direct calculation of interfacial properties of fluids close to the critical region by a molecular-based equation of state. Fluid Phase Equilibria, 2011, 306, 4-14.	1.4	50
57	Thermodynamic Modeling of Imidazolium-Based Ionic Liquids with the [PF ₆] ^{â^'} Anion for Separation Purposes. Separation Science and Technology, 2012, 47, 399-410.	1.3	49
58	A DFT study of the adsorption energy and electronic interactions of the SO ₂ molecule on a CoP hydrotreating catalyst. RSC Advances, 2021, 11, 2947-2957.	1.7	49
59	Thermodynamic properties of perfluoro-n-octane. Fluid Phase Equilibria, 2004, 225, 39-47.	1.4	48
60	Liquid–liquid equilibrium of (perfluoroalkane+alkane) binary mixtures. Fluid Phase Equilibria, 2006, 242, 210-219.	1.4	47
61	Assessing Ionic Liquids Experimental Data Using Molecular Modeling: [C _{<i>n</i>} mim][BF ₄] Case Study. Journal of Chemical & Engineering Data, 2014, 59, 3220-3231.	1.0	47
62	High pressure separation of greenhouse gases from air with 1-ethyl-3-methylimidazolium methyl-phosphonate. International Journal of Greenhouse Gas Control, 2013, 19, 299-309.	2.3	46
63	A breakthrough technique for the preparation of high-yield precipitated calcium carbonate. Journal of Supercritical Fluids, 2010, 52, 298-305.	1.6	45
64	Improved vapor–liquid equilibria predictions for Lennard-Jones chains from the statistical associating fluid dimer theory: Comparison with Monte Carlo simulations. Journal of Chemical Physics, 2001, 115, 4355-4358.	1.2	44
65	Water+1-alkanol systems: Modeling the phase, interface and viscosity properties. Fluid Phase Equilibria, 2013, 360, 367-378.	1.4	44
66	Effect of Immobilized Amines on the Sorption Properties of Solid Materials: Impregnation versus Grafting. Langmuir, 2013, 29, 199-206.	1.6	44
67	Application of a renormalization-group treatment to the statistical associating fluid theory for potentials of variable range (SAFT-VR). Journal of Chemical Physics, 2011, 134, 154102.	1.2	42
68	Optimization of the separation of sulfur hexafluoride and nitrogen by selective adsorption using monte carlo simulations. AICHE Journal, 2011, 57, 962-974.	1.8	42
69	Theory and simulation of associating fluids: Lennard-Jones chains with association sites. Molecular Physics, 1994, 83, 1209-1222.	0.8	40
70	Understanding CO ₂ Capture in Amine-Functionalized MCM-41 by Molecular Simulation. Journal of Physical Chemistry C, 2012, 116, 3017-3024.	1.5	40
71	Assessing the N2O/CO2 high pressure separation using ionic liquids with the soft-SAFT EoS. Journal of Supercritical Fluids, 2014, 92, 231-241.	1.6	40
72	Development of simple and transferable molecular models for biodiesel production with the soft-SAFT equation of state. Chemical Engineering Research and Design, 2014, 92, 2898-2911.	2.7	40

#	Article	lF	CITATIONS
73	Screening of Ionic Liquids and Deep Eutectic Solvents for Physical CO ₂ Absorption by Soft-SAFT Using Key Performance Indicators. Journal of Chemical & Engineering Data, 2020, 65, 5844-5861.	1.0	40
74	Predictions of the Jouleâ^'Thomson Inversion Curve for then-Alkane Series and Carbon Dioxide from the Soft-SAFT Equation of Stateâ€. Industrial & Engineering Chemistry Research, 2002, 41, 1069-1075.	1.8	39
75	Phase Equilibria Calculations of Polyethylene Solutions from SAFT-Type Equations of State. Macromolecules, 2006, 39, 4240-4246.	2.2	38
76	Selective Paraffin Removal from Ethane/Ethylene Mixtures by Adsorption into Aluminum Methylphosphonate-α: A Molecular Simulation Study. Langmuir, 2009, 25, 2148-2152.	1.6	38
77	High pressure solubility of CH4, N2O and N2 in 1-butyl-3-methylimidazolium dicyanamide: Solubilities, selectivities and soft-SAFT modeling. Journal of Supercritical Fluids, 2016, 110, 56-64.	1.6	38
78	New measurements and modeling of high pressure thermodynamic properties of glycols. Fluid Phase Equilibria, 2017, 436, 113-123.	1.4	38
79	Strategies for Integrated Capture and Conversion of CO ₂ from Dilute Flue Gases and the Atmosphere. ChemSusChem, 2021, 14, 1805-1820.	3.6	37
80	Analysis of CO ₂ Adsorption in Amine-Functionalized Porous Silicas by Molecular Simulations. Energy & Fuels, 2015, 29, 3855-3862.	2.5	36
81	The phase and interfacial properties of azeotropic refrigerants: the prediction of aneotropes from molecular theory. Physical Chemistry Chemical Physics, 2017, 19, 8977-8988.	1.3	36
82	Pharmaceutical Removal from Water Effluents by Adsorption on Activated Carbons: A Monte Carlo Simulation Study. Langmuir, 2017, 33, 11146-11155.	1.6	36
83	Solubility of greenhouse and acid gases on the [C4mim][MeSO4] ionic liquid for gas separation and CO2 conversion. Catalysis Today, 2015, 255, 87-96.	2.2	34
84	Modifying absorption process configurations to improve their performance for Post-Combustion CO2 capture – What have we learned and what is still Missing?. Chemical Engineering Journal, 2022, 430, 133096.	6.6	34
85	Phase equilibria in ternary Lennard-Jones systems. Fluid Phase Equilibria, 1995, 107, 31-43.	1.4	32
86	Pore Size Distribution of Porous Glasses:Â A Test of the Independent Pore Model. Langmuir, 2003, 19, 8592-8604.	1.6	32
87	A methodology to parameterize SAFT-type equations of state for solid precursors of deep eutectic solvents: the example of cholinium chloride. Physical Chemistry Chemical Physics, 2019, 21, 15046-15061.	1.3	32
88	Insights into the thermal stability and conversion of carbon-based materials by using ReaxFF reactive force field: Recent advances and future directions. Carbon, 2022, 196, 840-866.	5.4	32
89	Critical properties of homopolymer fluids studied by a Lennard-Jones statistical associating fluid theory. Molecular Physics, 2002, 100, 2519-2529.	0.8	31
90	Application of the fundamental measure density functional theory to the adsorption in cylindrical pores. Journal of Chemical Physics, 2003, 118, 830-842.	1.2	31

#	Article	IF	CITATIONS
91	Regenerable solid CO2 sorbents prepared by supercritical grafting of aminoalkoxysilane into low-cost mesoporous silica. Journal of Supercritical Fluids, 2014, 85, 68-80.	1.6	31
92	A systematic approach for the thermodynamic modelling of CO2-amine absorption process using molecular-based models. Applied Energy, 2018, 232, 273-291.	5.1	31
93	Tricritical phenomena in chain-like mixtures from a molecular-based equation of state. Fluid Phase Equilibria, 2000, 171, 91-104.	1.4	29
94	Thermodynamic characterisation of aqueous alkanolamine and amine solutions for acid gas processing by transferable molecular models. Applied Energy, 2018, 222, 687-703.	5.1	29
95	Sorption of tryalkoxysilane in low-cost porous silicates using a supercritical CO2 method. Microporous and Mesoporous Materials, 2012, 148, 15-24.	2.2	28
96	CO2 capture efficiency and carbonation/calcination kinetics of micro and nanosized particles of supercritically precipitated calcium carbonate. Chemical Engineering Journal, 2013, 226, 357-366.	6.6	28
97	Insights into the influence of the molecular structures of fluorinated ionic liquids on their thermophysical properties. A soft-SAFT based approach. Physical Chemistry Chemical Physics, 2019, 21, 6362-6380.	1.3	28
98	Modeling new adsorbents for ethylene/ethane separations by adsorption via π-complexation. Fluid Phase Equilibria, 1998, 150-151, 117-124.	1.4	27
99	New Procedure for Enhancing the Transferability of Statistical Associating Fluid Theory (SAFT) Molecular Parameters: The Role of Derivative Properties. Industrial & Engineering Chemistry Research, 2016, 55, 10011-10024.	1.8	27
100	Selective Adsorption of Volatile Organic Compounds in Micropore Aluminum Methylphosphonate-α: A Combined Molecular Simulationâ^'Experimental Approach. Langmuir, 2007, 23, 7299-7305.	1.6	26
101	Surface modification of antiâ€fouling novel cellulose/graphene oxide (GO) nanosheets (NS) microfiltration membranes for seawater desalination applications. Journal of Chemical Technology and Biotechnology, 2020, 95, 1915-1925.	1.6	26
102	Coexistence Densities of Methane and Propane by Canonical Molecular Dynamics and Gibbs Ensemble Monte Carlo Simulations. Molecular Simulation, 2003, 29, 463-470.	0.9	25
103	Perfect wetting along a three-phase line: Theory and molecular dynamics simulations. Journal of Chemical Physics, 2006, 124, 244505.	1.2	25
104	Alkylsilane-Functionalized Microporous and Mesoporous Materials: Molecular Simulation and Experimental Analysis of Gas Adsorption. Journal of Physical Chemistry C, 2012, 116, 10150-10161.	1.5	25
105	Understanding the Performance of New Amine-Functionalized Mesoporous Silica Materials for CO ₂ Adsorption. Industrial & Engineering Chemistry Research, 2014, 53, 15611-15619.	1.8	25
106	Molecular modeling of the solubility of low global warming potential refrigerants in polyol ester lubricants. International Journal of Refrigeration, 2019, 103, 145-154.	1.8	25
107	Polar soft-SAFT: theory and comparison with molecular simulations and experimental data of pure polar fluids. Physical Chemistry Chemical Physics, 2020, 22, 13171-13191.	1.3	25
108	A consistent thermodynamic molecular model of n-hydrofluoroolefins and blends for refrigeration applications. International Journal of Refrigeration, 2020, 113, 145-155.	1.8	25

#	Article	IF	CITATIONS
109	Performance of Activated Carbons Derived from Date Seeds in CO ₂ Swing Adsorption Determined by Combining Experimental and Molecular Simulation Data. Industrial & Engineering Chemistry Research, 2020, 59, 7161-7173.	1.8	25
110	Understanding the relationship between the structural properties of three corrosion inhibitors and their surface protectiveness ability in different environments. Applied Surface Science, 2021, 542, 148600.	3.1	25
111	Adsorption isotherms of associating chain molecules from Monte Carlo simulations. Molecular Physics, 1995, 85, 9-21.	0.8	24
112	Life cycle assessment of CaO looping versus amine-based absorption for capturing CO2 in a subcritical coal power plant. International Journal of Greenhouse Gas Control, 2016, 46, 18-27.	2.3	24
113	Perspectives on molecular modeling of supercritical fluids: From equations of state to molecular simulations. Recent advances, remaining challenges and opportunities. Journal of Supercritical Fluids, 2018, 134, 41-50.	1.6	24
114	Modeling the Self-Assembly of Nano Objects: Applications to Supramolecular Organic Monolayers Adsorbed on Metal Surfaces. Journal of Chemical Theory and Computation, 2013, 9, 2161-2169.	2.3	23
115	Thermophysical Characterization of Ionic Liquids Based on the Perfluorobutanesulfonate Anion: Experimental and Softâ€SAFT Modeling Results. ChemPhysChem, 2017, 18, 2012-2023.	1.0	23
116	Interfacial anomaly in low global warming potential refrigerant blends as predicted by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2019, 21, 22092-22102.	1.3	23
117	Assessment on Separating Hydrofluoroolefins from Hydrofluorocarbons at the Azeotropic Mixture R513A by Using Fluorinated Ionic Liquids: A Soft-SAFT Study. Industrial & Engineering Chemistry Research, 2020, 59, 13315-13324.	1.8	23
118	Hybrid – Slurry/Nanofluid systems as alternative to conventional chemical absorption for carbon dioxide capture: A review. International Journal of Greenhouse Gas Control, 2021, 110, 103415.	2.3	23
119	Systematic study of the effect of the co-solvent on the performance of amine-based solvents for CO2 capture. Separation and Purification Technology, 2022, 282, 120093.	3.9	23
120	Hybrid aminopolymer–silica materials for efficient CO ₂ adsorption. RSC Advances, 2015, 5, 104943-104953.	1.7	22
121	On the anomalous composition dependence of viscosity and surface tension in refrigerant blends. Journal of Molecular Liquids, 2018, 268, 190-200.	2.3	22
122	Accurate modeling of supercritical CO2 for sustainable processes: Water+CO2 and CO2+fatty acid esters mixtures. Journal of Supercritical Fluids, 2015, 96, 86-95.	1.6	21
123	Chemical potentials and adsorption isotherms of polymers confined between parallel plates. Chemical Engineering Science, 1994, 49, 2921-2929.	1.9	20
124	Molecular simulation and theory of associating chain molecules. International Journal of Thermophysics, 1995, 16, 705-713.	1.0	20
125	Thermodynamic properties and phase equilibria of branched chain fluids using first- and second-order Wertheim's thermodynamic perturbation theory. Journal of Chemical Physics, 2001, 115, 3906-3915.	1.2	20
126	Optimized molecular force field for sulfur hexafluoride simulations. Journal of Chemical Physics, 2007, 126, 144502.	1.2	20

#	Article	IF	CITATIONS
127	Modeling the vapor–liquid equilibrium and association of nitrogen dioxide/dinitrogen tetroxide and its mixtures with carbon dioxide. Fluid Phase Equilibria, 2008, 266, 154-163.	1.4	20
128	A new method using compressed CO2 for the in situ functionalization of mesoporous silica with hyperbranched polymers. Chemical Communications, 2013, 49, 11776.	2.2	20
129	Phase equilibria description of biodiesels with water and alcohols for the optimal design of the production and purification process. Fuel, 2014, 129, 116-128.	3.4	20
130	Vapor Liquid Equilibria of Binary Mixtures of 1-Butyl-3-methylimidazolium Triflate (C ₄ mimTfO) and Molecular Solvents: <i>n</i> Alkyl Alcohols and Water. Journal of Physical Chemistry B, 2018, 122, 6017-6032.	1.2	20
131	A Comparative Assessment of Emerging Solvents and Adsorbents for Mitigating CO2 Emissions From the Industrial Sector by Using Molecular Modeling Tools. Frontiers in Energy Research, 2020, 8, .	1.2	20
132	A new algorithm for molecular dynamics simulations in the grand canonical ensemble. Molecular Physics, 1994, 82, 439-453.	0.8	19
133	Modeling the Phase Equilibria of Poly(ethylene glycol) Binary Mixtures with soft-SAFT EoS. Industrial & Engineering Chemistry Research, 2007, 46, 4678-4685.	1.8	19
134	Adsorption of Hydrogen and Methane Mixtures on Carbon Cylindrical Cavities. Journal of Physical Chemistry C, 2007, 111, 6473-6480.	1.5	19
135	Molecular simulations of carbon-based materials for selected CO2 separation and water treatment processes. Fluid Phase Equilibria, 2019, 492, 10-25.	1.4	19
136	Liquid vapor equilibria for an ab initio model for water. Journal of Chemical Physics, 1999, 111, 2103-2108.	1.2	18
137	Monitoring the Effect of Mineral Precursor, Fluid Phase CO ₂ –H ₂ O Composition, and Stirring on CaCO ₃ Crystallization in a Supercritical—Ultrasound Carbonation Process. Crystal Growth and Design, 2011, 11, 5324-5332.	1.4	18
138	New Experimental Data and Modeling of Glymes: Toward the Development of a Predictive Model for Polyethers. Industrial & Engineering Chemistry Research, 2017, 56, 7830-7844.	1.8	18
139	110th Anniversary: Accurate Modeling of the Simultaneous Absorption of H2S and CO2 in Aqueous Amine Solvents. Industrial & Engineering Chemistry Research, 2019, 58, 6870-6886.	1.8	18
140	Salt-free synthesis of Cu-BTC metal-organic framework exhibiting mesoporosity and enhanced carbon dioxide adsorption. Microporous and Mesoporous Materials, 2021, 324, 111265.	2.2	18
141	Assessment of Low Global Warming Potential Refrigerants for Drop-In Replacement by Connecting their Molecular Features to Their Performance. ACS Sustainable Chemistry and Engineering, 2021, 9, 17034-17048.	3.2	18
142	The hydrophobic hydration of methane as a function of temperature from histogram reweighting Monte Carlo simulations. Journal of Chemical Physics, 2001, 114, 7527-7535.	1.2	17
143	New insights into the adsorption isotherm interpretation by a coupled molecular simulation—experimental procedure. Applied Surface Science, 2005, 252, 519-528.	3.1	17
144	Pore Size Distribution Analysis of Selected Hexagonal Mesoporous Silicas by Grand Canonical Monte Carlo Simulations. Langmuir, 2005, 21, 8733-8742.	1.6	17

#	Article	IF	CITATIONS
145	Vaporâ^'Liquid and Critical Behavior of Binary Systems of Hydrogen Chloride and <i>n</i> -Alkanes: Experimental Data and Soft-SAFT Modeling. Journal of Physical Chemistry B, 2007, 111, 10180-10188.	1.2	17
146	An accurate direct technique for parametrizing cubic equations of state. Fluid Phase Equilibria, 2008, 264, 201-210.	1.4	17
147	Systematic study of the influence of the molecular structure of fluorinated ionic liquids on the solubilization of atmospheric gases using a soft-SAFT based approach. Journal of Molecular Liquids, 2019, 294, 111645.	2.3	17
148	Design of Subâ€Nanochannels between Graphene Oxide Sheets via Crown Ether Intercalation to Selectively Regulate Cation Permeation. Advanced Materials Interfaces, 2020, 7, 1901876.	1.9	17
149	Critical assessment of the performance of next-generation carbon-based adsorbents for CO2 capture focused on their structural properties. Science of the Total Environment, 2022, 810, 151720.	3.9	17
150	Assessing the effect of impurities on the thermophysical properties of methane-based energy systems using polar soft-SAFT. Fluid Phase Equilibria, 2021, 527, 112841.	1.4	16
151	Are we missing something when evaluating adsorbents for CO ₂ capture at the system level?. Energy and Environmental Science, 2021, 14, 6360-6380.	15.6	16
152	Effect of Amine Functionalization of MOF Adsorbents for Enhanced CO2 Capture and Separation: A Molecular Simulation Study. Frontiers in Chemistry, 2020, 8, 574622.	1.8	16
153	Searching for Sustainable Refrigerants by Bridging Molecular Modeling with Machine Learning. Industrial & Engineering Chemistry Research, 2022, 61, 7414-7429.	1.8	16
154	Water liquid-vapor equilibria predicted by refined ab initio derived potentials. Journal of Chemical Physics, 2005, 123, 044506.	1.2	15
155	Incorporating critical divergence of isochoric heat capacity into the softâ€&AFT equation of state. AICHE Journal, 2015, 61, 3073-3080.	1.8	15
156	Microscale Spatially Resolved Characterization of Highly Doped Regions in Laser-Fired Contacts for High-Efficiency Crystalline Si Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 545-551.	1.5	15
157	Molecular simulations of phenol and ibuprofen removal from water using multilayered graphene oxide membranes. Molecular Physics, 2019, 117, 3703-3714.	0.8	15
158	Functionalization of fluorinated ionic liquids: A combined experimental-theoretical study. Journal of Molecular Liquids, 2020, 302, 112489.	2.3	15
159	Systematic Search of Suitable Metal–Organic Frameworks for Thermal Energy-Storage Applications with Low Global Warming Potential Refrigerants. ACS Sustainable Chemistry and Engineering, 2021, 9, 3157-3171.	3.2	15
160	Computational modeling of green hydrogen generation from photocatalytic H2S splitting: Overview and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 49, 100456.	5.6	15
161	The toxicity effects of atmospheres with high content of carbon dioxide with addition of sulphur dioxide on two stored-product pest species: Sitophilus oryzae and Tribolium confusum. Journal of Stored Products Research, 2014, 57, 58-62.	1.2	14
162	Accurate viscosity predictions of linear polymers from n-alkanes data. Journal of Molecular Liquids, 2017, 243, 115-123.	2.3	14

#	Article	IF	CITATIONS
163	Liquid–liquid equilibrium of (1H,1H,7H-perfluoroheptan-1-ol+perfluoroalkane) binary mixtures. Fluid Phase Equilibria, 2007, 251, 33-40.	1.4	13
164	An accurate direct technique for parameterizing cubic equations of state. Fluid Phase Equilibria, 2008, 265, 155-172.	1.4	13
165	Soft-SAFT modeling of vapor–liquid equilibria of nitriles and their mixtures. Fluid Phase Equilibria, 2010, 289, 191-200.	1.4	13
166	Measurement and Modeling of Isobaric Vapor–Liquid Equilibrium of Water + Glycols. Journal of Chemical & Engineering Data, 2018, 63, 2394-2401.	1.0	13
167	High-pressure solubility of CO2 in glymes. Fuel, 2018, 219, 120-125.	3.4	13
168	Effect of surface active sites on adsorption of associating chain molecules in pores: A Monte Carlo study. Adsorption, 1996, 2, 59-68.	1.4	11
169	Nitrogen and Water Adsorption in Aluminum Methylphosphonate α: A Molecular Simulation Study. Langmuir, 2006, 22, 3097-3104.	1.6	11
170	Investigating the Compatibility of Ruthenium Liners with Copper Interconnects. ECS Transactions, 2010, 33, 181-187.	0.3	11
171	Pharmaceuticals removal from water effluents by adsorption in activated carbons using Monte Carlo simulations. Computer Aided Chemical Engineering, 2017, 40, 2695-2700.	0.3	11
172	Insights into the Transport Properties of Electrolyte Solutions in a Hierarchical Carbon Electrode by Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2019, 123, 27273-27285.	1.5	11
173	Quantifying the effect of polarity on the behavior of mixtures of <scp><i>n</i>â€alkanes</scp> with dipolar solvents using polar <scp>softâ€</scp> statistical associating fluid theory (Polar softâ€AFT). AICHE Journal, 2021, 67, e16649.	1.8	11
174	Sustainability criteria as a game changer in the search for hybrid solvents for CO2 and H2S removal. Separation and Purification Technology, 2021, 277, 119516.	3.9	11
175	Search for a reliable methodology for PSD determination based on a combined molecular simulation–regularization–experimental approach. Applied Surface Science, 2005, 252, 538-547.	3.1	10
176	Analysis of electron interactions in dielectric gases. Journal of Applied Physics, 2007, 101, 023308.	1.1	10
177	An accurate direct technique for parameterizing cubic equations of state. Fluid Phase Equilibria, 2008, 265, 66-83.	1.4	10
178	Development of a robust soft-SAFT model for protic ionic liquids using new high-pressure density data. Fluid Phase Equilibria, 2021, 539, 113036.	1.4	10
179	Insights into the performance of hybrid graphene oxide/MOFs for CO2 capture at process conditions by molecular simulations. Chemical Engineering Journal, 2022, 449, 137884.	6.6	10
180	Mixtures of Associating and Non-associating Chains on Activated Surfaces: A Monte Carlo Approach. Molecular Simulation, 1995, 15, 141-154.	0.9	9

#	Article	IF	CITATIONS
181	Thermodynamic properties and aggregate formation of surfactant-like molecules from theory and simulation. Journal of Chemical Physics, 2004, 120, 9822-9830.	1.2	9
182	A novel solventless coating method to graft low-molecular weight polyethyleneimine on silica fine powders. Journal of Polymer Science Part A, 2014, 52, 2760-2768.	2.5	9
183	Isobaric vapor-liquid equilibrium of waterÂ+ glymes binary mixtures: Experimental measurements and molecular thermodynamic modelling. Fluid Phase Equilibria, 2020, 513, 112547.	1.4	9
184	Detailed surface characterization of highly fluorinated liquid alcohols: Experimental surface tensions, molecular simulations and soft-SAFT theory. Journal of Molecular Liquids, 2020, 300, 112294.	2.3	8
185	Searching for Suitable Lubricants for low Global Warming Potential Refrigerant R513A using Molecular-Based Models: Solubility and Performance in Refrigeration Cycles. International Journal of Refrigeration, 2021, 128, 252-252.	1.8	8
186	Quantifying the effect of polar interactions on the behavior of binary mixtures: Phase, interfacial, and excess properties. Journal of Chemical Physics, 2021, 154, 164503.	1.2	8
187	Unveiling the phase behavior of C _i E _j non-ionic surfactants in water through coarse-grained molecular dynamics simulations. Soft Matter, 2021, 17, 5183-5196.	1.2	8
188	Understanding the phase and solvation behavior of fluorinated ionic liquids. Journal of Molecular Liquids, 2022, 359, 119285.	2.3	8
189	Predictions of Transport Properties in Gaseous Mixtures of Sulfur Hexafluoride and Nitrogenâ€. Journal of Physical Chemistry C, 2007, 111, 16013-16020.	1.5	7
190	Liquid–liquid equilibrium of substituted perfluoro-n-octane+n-octane systems. Fluid Phase Equilibria, 2008, 268, 85-89.	1.4	7
191	Accurate Predictions of the Effect of Hydrogen Composition on the Thermodynamics and Transport Properties of Natural Gas. Industrial & Engineering Chemistry Research, 2022, 61, 6214-6234.	1.8	7
192	The Hydrogen Economy Preface. Industrial & amp; Engineering Chemistry Research, 2022, 61, 6065-6066.	1.8	7
193	Interaction between Coated Graphite Nanoparticles by Molecular Simulation. Journal of Physical Chemistry C, 2007, 111, 12328-12334.	1.5	6
194	Chapter 5 Structural characterization of nano- and mesoporous materials by molecular simulations. Theoretical and Computational Chemistry, 2007, 18, 101-126.	0.2	6
195	Microscale Characterization of Surface Recombination at the Vicinity of Laser-Processed Regions in c-Si Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 426-431.	1.5	6
196	Evaluation of the solvent structural effect upon the vapor –liquid equilibrium of [C4C1im][Cl]Â+ alcohols. Fluid Phase Equilibria, 2017, 440, 36-44.	1.4	6
197	Sulfur hexafluoride's liquid-vapor coexistence curve, interfacial properties, and diffusion coefficients as predicted by a simple rigid model. Journal of Chemical Physics, 2005, 123, 194508.	1.2	5
198	Grand Canonical Monte Carlo Simulations to Determine the Optimal Interlayer Distance of a Graphene Slit-Shaped Pore for Adsorption of Methane, Hydrogen and their Equimolar Mixture. Nanomaterials, 2021, 11, 2534.	1.9	5

#	Article	IF	CITATIONS
199	Modeling of Hierarchical Cathodes for Li-Air Batteries with Improved Discharge Capacity. Journal of the Electrochemical Society, 2021, 168, 120534.	1.3	5
200	Molecular Modeling of Selective Adsorption from Mixtures. Materials Research Society Symposia Proceedings, 1997, 497, 231.	0.1	4
201	Predicting Liquid–Vapour Equilibria for Water Using an <i>ab-initio</i> Potential from Histogram Reweighting Monte Carlo Simulations. Molecular Simulation, 2000, 24, 63-69.	0.9	4
202	On the observation of electron-hole liquid luminescence under low excitation in Al2O3-passivated c-Si wafers. Physica Status Solidi - Rapid Research Letters, 2014, 8, 943-947.	1.2	4
203	Encapsulated Protic Ionic Liquids as Sustainable Materials for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2022, 61, 4046-4057.	1.8	4
204	The influence of the density in the hydrophobic hydration of methane in supercritical water. Journal of Molecular Liquids, 2002, 101, 113-125.	2.3	3
205	Calculation of the force between surfaces coated with grafted molecules by molecular simulation. Journal of Chemical Physics, 2006, 124, 034703.	1.2	3
206	Modeling the phase equilibria of nitriles by the soft-SAFT Equation of State. Computer Aided Chemical Engineering, 2008, 25, 739-744.	0.3	3
207	An equation of state for poreâ€confined fluids. AICHE Journal, 2012, 58, 3597-3600.	1.8	3
208	Comparative Study of MOFs and Zeolites For CO2 Capture and Separation at Process Conditions. , 2016, , .		3
209	Crystallization processes in bicomponent thin film depositions: Towards a realistic kinetic Monte Carlo simulation. Surface and Coatings Technology, 2018, 343, 38-48.	2.2	3
210	Synergetic Effect of Physicochemical and Electrostatic Strategies on Ion Sieving for Polymer Cross-linked Graphene Oxide Membrane. Environmental Science: Nano, 0, , .	2.2	2
211	Editorial: Chemical Modification of Adsorbents for Enhanced Carbon Capture Performance. Frontiers in Chemistry, 2021, 9, 657669.	1.8	2
212	How Molecular Modelling Tools Can Help in Mitigating Climate Change. Molecular Modeling and Simulation, 2021, , 181-220.	0.2	2
213	Understanding the Absorption of Fluorinated Gases in Fluorinated Ionic Liquids for Recovering Purposes Using Soft-SAFT. Journal of Chemical & Engineering Data, 2022, 67, 1951-1963.	1.0	2
214	Adhesion and Cohesion of Silica Surfaces with Quartz Cement: A Molecular Simulations Study. ACS Omega, 2022, 7, 22303-22316.	1.6	2
215	Adsorption Isotherms of Associating Fluids in Slit-Like Pores. A Monte Carlo Simulation Study. Kluwer International Series in Engineering and Computer Science, 1996, , 993-1000.	0.2	1
216	Precise Characterization of Selected Silica-Based Materials from Grand Canonical Monte Carlo Simulations. Materials Science Forum, 2006, 514-516, 1396-1400.	0.3	1

#	Article	IF	CITATIONS
217	Hydrogen Technologies and Applications: Safety. Advances in Science and Technology, 0, , .	0.2	1
218	Soft-SAFT Equation of State as a Valuable Tool for the Design of new CO2 Capture Technologies , 2017, , .		1
219	Amine-functionalized hierarchical zeolites for carbon dioxide capture. , 2018, , .		1
220	Molecular Thermodynamic Modeling of Hybrid Ionic Liquids for Biogas Upgrading. Industrial & Engineering Chemistry Research, 2022, 61, 12190-12207.	1.8	1
221	A Thermodynamic Robust Model to Assess Hybrid Solvents for CO2 Capture. , 2020, , .		0
222	Development of predictive molecular models to describe thermodynamic and transport properties of hydrocarbons and their mixtures present in petroleum fractions. , 2018, , .		0
223	Accurate viscosity predictions of carbonated aqueous MEA Solutions for CO2 capture processes. , 2018, , .		0
224	Exploring alternative solvents for gas processing using the soft-SAFT EoS. , 2018, , .		0
225	Robust Thermodynamic Models to Describe the Physicochemical Behaviour of Deep Eutectic Solvents for Gas Separation. , 0, , .		0