Manuel Caruso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6036770/publications.pdf

Version: 2024-02-01

471509 477307 34 863 17 29 citations h-index g-index papers 35 35 35 881 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Efficient Gammaâ€Retroviral Transduction of Primary Human Skin Cells Using the EFâ€c Peptide as a Transduction Enhancer. Current Protocols, 2022, 2, e353.	2.9	1
2	EPH receptor tyrosine kinases phosphorylate the PAR-3 scaffold protein to modulate downstream signaling networks. Cell Reports, 2022, 40, 111031.	6.4	8
3	A stable platform for the production of virus-like particles pseudotyped with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein. Virus Research, 2021, 295, 198305.	2.2	14
4	Generation of High-Titer Self-Inactivated \hat{I}^3 -Retroviral Vector Producer Cells. Molecular Therapy - Methods and Clinical Development, 2019, 14, 90-99.	4.1	8
5	The Size of the Unbranched Aliphatic Chain Determines the Immunomodulatory Potency of Short and Long Chain n-Alkanols. Journal of Biological Chemistry, 2013, 288, 24948-24955.	3.4	9
6	Nilotinib and imatinib inhibit cytarabine cellular uptake: Implications for combination therapy. Leukemia Research, 2012, 36, 1311-1314.	0.8	9
7	Gap junctions in human glioblastomas: implications for suicide gene therapy. Cancer Gene Therapy, 2011, 18, 674-681.	4.6	29
8	Methanol Induces a Discrete Transcriptional Dysregulation that Leads to Cytokine Overproduction in Activated Lymphocytes. Toxicological Sciences, 2010, 117, 303-313.	3.1	6
9	Gemcitabine intercellular diffusion mediated by gap junctions: new implications for cancer therapy. Molecular Cancer, 2010, 9, 141.	19.2	33
10	A Dominant-Negative Approach That Prevents Diphthamide Formation Confers Resistance to Pseudomonas Exotoxin A and Diphtheria Toxin. PLoS ONE, 2010, 5, e15753.	2.5	17
11	Efficient Human Hematopoietic Cell Transduction Using RD114- and GALV-Pseudotyped Retroviral Vectors Produced in Suspension and Serum-Free Media. Human Gene Therapy, 2009, 20, 966-974.	2.7	52
12	Characterization of an alternative packaging system derived from the cat RD114 retrovirus for gene delivery. Journal of Gene Medicine, 2009, 11, 664-669.	2.8	4
13	Bystander effect in glioblastoma cells with a predominant cytoplasmic localization of connexin43. Cancer Gene Therapy, 2008, 15, 823-831.	4.6	22
14	Diphtheria toxin mutant CRM197 is an inhibitor of protein synthesis that induces cellular toxicity. Toxicon, 2008, 51, 473-477.	1.6	16
15	Immunosuppressive Effect of Isopropanol: Down-Regulation of Cytokine Production Results from the Alteration of Discrete Transcriptional Pathways in Activated Lymphocytes. Journal of Immunology, 2008, 181, 2348-2355.	0.8	18
16	Rescue of the immunotherapeutic potential of a novel T cell epitope in the Epstein–Barr virus latent membrane protein 2. Virology, 2007, 361, 253-262.	2.4	10
17	Generation of a high-titer packaging cell line for the production of retroviral vectors in suspension and serum-free media. Gene Therapy, 2007, 14, 1705-1711.	4.5	36
18	VSV-G pseudotyped, MuLV-based, semi-replication-competent retrovirus for cancer treatment. Gene Therapy, 2006, 13, 1457-1470.	4.5	19

#	Article	IF	CITATIONS
19	818. Development of Packaging Cell Lines for the Large-Scale Production of High-Titer Clinical Grade Recombinant Retroviruses. Molecular Therapy, 2006, 13, S317-S318.	8.2	O
20	A nuclear localization signal in the matrix of spleen necrosis virus (SNV) does not allow efficient gene transfer into quiescent cells with SNV-derived vectors. Virology, 2005, 338, 292-296.	2.4	12
21	PG13 Packaging Cells Produce Recombinant Retroviruses Carrying a Diphtheria Toxin Mutant Which Kills Cancer Cells. Journal of Virology, 2002, 76, 7343-7348.	3.4	12
22	High Translation Efficiency Is Mediated by the Encephalomyocarditis Virus Internal Ribosomal Entry Sites if the Natural Sequence Surrounding the Eleventh AUG Is Retained. Human Gene Therapy, 2002, 13, 881-887.	2.7	31
23	Enhanced Ganciclovir Killing and Bystander Effect of Human Tumor Cells Transduced with a Retroviral Vector Carrying a Herpes Simplex Virus Thymidine Kinase Gene Mutant. Human Gene Therapy, 2000, 11, 1569-1576.	2.7	56
24	Retrovirus-Mediated Gene Transfer of the Human Multidrug Resistance-Associated Protein into Hematopoietic Cells Protects Mice from Chemotherapy-Induced Leukopenia. Human Gene Therapy, 1999, 10, 801-811.	2.7	20
25	Retrovirus-Mediated Gene Transfer of the Multidrug Resistance-Associated Protein (MRP) cDNA Protects Cells from Chemotherapeutic Agents. Human Gene Therapy, 1997, 8, 1745-1751.	2.7	26
26	Variable Efficiency of the Thymidine Kinase/Ganciclovir System in Human Glioblastoma Cell Lines: Implications for Gene Therapy. Human Gene Therapy, 1997, 8, 1945-1953.	2.7	36
27	Efficient retroviral gene transfer of a Tat-regulated herpes simplex virus thymidine kinase gene for HIV gene therapy. Virus Research, 1997, 52, 133-143.	2.2	10
28	Human Immunodeficiency Virus Type 1 (HIV-1) Infection of Herpesvirus Saimiri-Immortalized Human CD4-Positive T Lymphoblastoid Cells: Evidence of Enhanced HIV-1 Replication and Cytopathic Effects Caused by Endogenous Interferon- \hat{l}^3 . Virology, 1997, 231, 1-9.	2.4	19
29	Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11302-11306.	7.1	211
30	Gene therapy against cancer and HIV infection using the gene encoding herpes simplex virus thymidine kinase. Trends in Molecular Medicine, 1996, 2, 212-217.	2.6	25
31	Expression of a Tat-inducible herpes simplex virus-thymidine kinase gene protectsacyclovir-treated CD4 cells from HIV-1 spread by conditional suicide and inhibition of reverse transcription. Virology, 1995, 206, 495-503.	2.4	24
32	Cellular Thymidine Kinase Activity Is Required for the Inhibition of HIV-1 Replication by AZT in Lymphocytes. Virology, 1994, 200, 271-275.	2.4	12
33	Can Diphtheria Toxin be Used for Gene Therapy of Human Immunodeficiency Virus Infection?. AIDS Research and Human Retroviruses, 1992, 8, 1949-1950.	1.1	5
34	A new modified amino acid. 2-Amino-3-mercapto-3-phenylpropionic acid (3-mercaptophenylalanine). Synthesis of derivatives, separation of stereoisomers, and assignment of absolute configuration. Journal of Organic Chemistry, 1988, 53, 3154-3158.	3.2	51