
Gareth J Marlow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6036638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Fiber Knob Protein of Human Adenovirus Type 49 Mediates Highly Efficient and Promiscuous Infection of Cancer Cell Lines Using a Novel Cell Entry Mechanism. Journal of Virology, 2021, 95, .	3.4	9
2	Environmental factors and risk of aggressive prostate cancer among a population of New Zealand men – a genotypic approach. Molecular BioSystems, 2017, 13, 681-698.	2.9	14
3	Epigenetic Regulation of Gene Expression Induced by Butyrate in Colorectal Cancer: Involvement of MicroRNA. Genetics & Epigenetics, 2017, 9, 1179237X1772990.	2.5	19
4	Effect of ageing and single nucleotide polymorphisms associated with the risk of aggressive prostate cancer in a New Zealand population. Molecular BioSystems, 2017, 13, 1967-1980.	2.9	2
5	SNP-SNP interactions as risk factors for aggressive prostate cancer. F1000Research, 2017, 6, 621.	1.6	9
6	Prostate Cancer: Is It a Battle Lost to Age?. Geriatrics (Switzerland), 2016, 1, 27.	1.7	11
7	Are We Eating Our Way to Prostate Cancer—A Hypothesis Based on the Evolution, Bioaccumulation, and Interspecific Transfer of miR-150. Non-coding RNA, 2016, 2, 2.	2.6	4
8	Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions. Nutrients, 2016, 8, 513.	4.1	127
9	The role of vitamin D in reducing gastrointestinal disease risk and assessment of individual dietary intake needs: Focus on genetic and genomic technologies. Molecular Nutrition and Food Research, 2016, 60, 119-133.	3.3	17
10	Environmental and genetic determinants of childhood depression: The roles of DAT1 and the antenatal environment. Journal of Affective Disorders, 2016, 197, 151-158.	4.1	11
11	Associations Between the KIAA0319 Dyslexia Susceptibility Gene Variants, Antenatal Maternal Stress, and Reading Ability in a Longitudinal Birth Cohort. Dyslexia, 2016, 22, 379-393.	1.5	22
12	Identification of Potential Anticancer Activities of Novel Ganoderma lucidum Extracts Using Gene Expression and Pathway Network Analysis. Genomics Insights, 2016, 9, GEI.S32477.	3.0	11
13	Differential effects of two probiotics on the risks of eczema and atopy associated with single nucleotide polymorphisms to Tollâ€like receptors. Pediatric Allergy and Immunology, 2015, 26, 262-271.	2.6	32
14	Extracts of Feijoa Inhibit Toll-Like Receptor 2 Signaling and Activate Autophagy Implicating a Role in Dietary Control of IBD. PLoS ONE, 2015, 10, e0130910.	2.5	11
15	Effect of Sulforaphane on NOD2 via NF-κB: implications for Crohn's disease. Journal of Inflammation, 2015, 12, 6.	3.4	16
16	Food Intolerance: Associations with the rs12212067 Polymorphism of FOXO3 in Crohn's Disease Patients in New Zealand. Journal of Nutrigenetics and Nutrigenomics, 2015, 8, 70-80.	1.3	13
17	Anti-Inflammatory Activity of Fruit Fractions in Vitro, Mediated through Toll-Like Receptor 4 and 2 in the Context of Inflammatory Bowel Disease. Nutrients, 2014, 6, 5265-5279.	4.1	19
18	Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn's disease patients. Human Genomics, 2013, 7, 24.	2.9	162

#	Article	IF	CITATIONS
19	Why interleukin-10 supplementation does not work in Crohn's disease patients. World Journal of Gastroenterology, 2013, 19, 3931.	3.3	117
20	Recessive Mutations in the Putative Calcium-Activated Chloride Channel Anoctamin 5 Cause Proximal LGMD2L and Distal MMD3 Muscular Dystrophies. American Journal of Human Genetics, 2010, 86, 213-221.	6.2	245
21	A new distal myopathy with mutation in anoctamin 5. Neuromuscular Disorders, 2010, 20, 791-795.	0.6	55
22	Patients with a Non-dysferlin Miyoshi Myopathy have a Novel Membrane Repair Defect. Traffic, 2007, 8, 77-88.	2.7	56