
Thierry Djenizian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6035281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Threeâ€Dimensional Selfâ€&upported Metal Oxides for Advanced Energy Storage. Advanced Materials, 2014, 26, 3368-3397.	21.0	446
2	Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes. Chemistry of Materials, 2009, 21, 63-67.	6.7	320
3	TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries. Electrochimica Acta, 2009, 54, 4262-4268.	5.2	137
4	Nanostructured negative electrodes based on titania for Li-ion microbatteries. Journal of Materials Chemistry, 2011, 21, 9925.	6.7	103
5	A novel architectured negative electrode based on titania nanotube and iron oxide nanowire composites for Li-ion microbatteries. Journal of Materials Chemistry, 2010, 20, 4041.	6.7	88
6	Porous Silicon Nanotube Arrays as Anode Material for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 20495-20498.	8.0	86
7	ALD Al ₂ O ₃ -Coated TiO ₂ Nanotube Layers as Anodes for Lithium-Ion Batteries. ACS Omega, 2017, 2, 2749-2756.	3.5	60
8	Electronic Circuits Integration in Textiles for Data Processing in Wearable Technologies. Advanced Materials Technologies, 2018, 3, 1700320.	5.8	57
9	Electropolymerization of copolymer electrolyte into titania nanotube electrodes for high-performance 3D microbatteries. Electrochemistry Communications, 2011, 13, 894-897.	4.7	52
10	The electrochemical behaviour of TiO2 nanotubes with Co3O4 or NiO submicron particles: Composite anode materials for Li-ion micro batteries. Electrochimica Acta, 2013, 88, 814-820.	5.2	50
11	High energy and power density TiO2 nanotube electrodes for single and complete lithium-ion batteries. Journal of Power Sources, 2015, 273, 1182-1188.	7.8	45
12	All-solid-state lithium-ion batteries based on self-supported titania nanotubes. Electrochemistry Communications, 2014, 43, 121-124.	4.7	43
13	Flexible Micro-Battery for Powering Smart Contact Lens. Sensors, 2019, 19, 2062.	3.8	41
14	Optical and Electrochemical Properties of Self-Organized TiO2 Nanotube Arrays From Anodized Tiâ^'6Alâ^'4V Alloy. Frontiers in Chemistry, 2019, 7, 66.	3.6	39
15	Electrochemical fabrication of Sn nanowires on titania nanotube guide layers. Nanotechnology, 2008, 19, 205601.	2.6	38
16	Electrodeposition of polymer electrolyte in nanostructured electrodes for enhanced electrochemical performance of thin-film Li-ion microbatteries. Journal of Power Sources, 2017, 340, 242-246.	7.8	34
17	High performance stretchable Li-ion microbattery. Energy Storage Materials, 2020, 33, 108-115.	18.0	34
18	Sulfidated TiO ₂ nanotubes: A potential 3D cathode material for Li-ion micro batteries. Chemical Communications, 2013, 49, 4205-4207.	4.1	33

THIERRY DJENIZIAN

#	Article	IF	CITATIONS
19	Niobium Alloying of Selfâ€Organized TiO ₂ Nanotubes as an Anode for Lithiumâ€Ion Microbatteries. Advanced Materials Technologies, 2018, 3, 1700274.	5.8	33
20	Beyond flexible-Li-ion battery systems for soft electronics. Energy Storage Materials, 2021, 42, 773-785.	18.0	33
21	Highly conformal electrodeposition of copolymer electrolytes into titania nanotubes for 3D Li-ion batteries. Nanoscale Research Letters, 2012, 7, 349.	5.7	32
22	Anodized Ti ₃ SiC ₂ As an Anode Material for Li-ion Microbatteries. ACS Applied Materials & Interfaces, 2016, 8, 16670-16676.	8.0	32
23	Flexible and Stretchable Microbatteries for Wearable Technologies. Advanced Materials Technologies, 2020, 5, .	5.8	30
24	Direct Pre-lithiation of Electropolymerized Carbon Nanotubes for Enhanced Cycling Performance of Flexible Li-Ion Micro-Batteries. Polymers, 2020, 12, 406.	4.5	28
25	ALD growth of MoS2 nanosheets on TiO2 nanotube supports. FlatChem, 2019, 17, 100130.	5.6	22
26	Enhanced Electrochemical Performance of Electropolymerized Self-Organized TiO2 Nanotubes Fabricated by Anodization of Ti Grid. Frontiers in Physics, 2019, 7, .	2.1	20
27	The Electrochemical Behavior of SnSb as an Anode for Li-ion Batteries Studied by Electrochemical Impedance Spectroscopy and Electron Microscopy. Electrochimica Acta, 2017, 256, 155-161.	5.2	17
28	Electrodeposited copolymer electrolyte into nanostructured titania electrodes for 3D Li-ion microbatteries. Comptes Rendus Chimie, 2013, 16, 80-88.	0.5	15
29	Tailoring the morphological properties of anodized Ti 3 SiC 2 for better power density of Li-ion microbatteries. Electrochemistry Communications, 2017, 81, 29-33.	4.7	15
30	Electrodeposition of Polymer Electrolyte Into Porous LiNi0.5Mn1.5O4 for High Performance All-Solid-State Microbatteries. Frontiers in Chemistry, 2019, 6, 675.	3.6	12
31	Determination of optical parameters of the porcine eye and development of a simulated model. Journal of Biophotonics, 2019, 12, e201800398.	2.3	10
32	Self-supported sulphurized TiO2 nanotube layers as positive electrodes for lithium microbatteries. Applied Materials Today, 2019, 16, 257-264.	4.3	10
33	Electrodeposition of polymer electrolyte into carbon nanotube tissues for high performance flexible Li-ion microbatteries. APL Materials, 2019, 7, .	5.1	10
34	All-Solid-State Lithium Ion Batteries Using Self-Organized TiO2 Nanotubes Grown from Ti-6Al-4V Alloy. Molecules, 2020, 25, 2121.	3.8	10
35	TiO2 Nanotube Layers Decorated with Al2O3/MoS2/Al2O3 as Anode for Li-ion Microbatteries with Enhanced Cycling Stability. Nanomaterials, 2020, 10, 953.	4.1	9
36	Biomimetic models of the human eye, and their applications. Nanotechnology, 2021, 32, 302001.	2.6	9

THIERRY DJENIZIAN

#	Article	IF	CITATIONS
37	TiO2 nanotube layers decorated by titania nanoparticles as anodes for Li-ion microbatteries. Materials Chemistry and Physics, 2022, 276, 125337.	4.0	9
38	Superior Electrochemical Performance of Thin-Film Thermoplastic Elastomer-Coated SnSb as an Anode for Li-ion Batteries. Scientific Reports, 2019, 9, 4301.	3.3	8
39	Sputterâ€Deposited Amorphous LiCuPO ₄ Thin Film as Cathode Material for Liâ€ion Microbatteries. ChemistrySelect, 2018, 3, 405-409.	1.5	6
40	Changes in temperature inside an optomechanical model of the human eye during emulated transscleral cyclophotocoagulation. Biomedical Optics Express, 2020, 11, 4548.	2.9	5
41	Editorial: Advances in Porous Semiconductor Research. Frontiers in Chemistry, 2020, 8, 122.	3.6	1
42	Enhancing Electrochemical Performance of Stretchable/Flexible Liâ€Ion Microbatteries by Tuning Microstructured Electrode Dimensions. Advanced Materials Interfaces, 0, , 2102541.	3.7	0