An-Qiang Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6034819/publications.pdf Version: 2024-02-01

AN-OLANC PAN

#	Article	IF	CITATIONS
1	Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2018, 3, 2480-2501.	8.8	1,553
2	Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged Highâ€Energyâ€Density and Durable Aqueous Zincâ€Ion Battery. Advanced Functional Materials, 2019, 29, 1808375.	7.8	568
3	Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy and Environmental Science, 2020, 13, 4625-4665.	15.6	497
4	Surfaceâ€Preferred Crystal Plane for a Stable and Reversible Zinc Anode. Advanced Materials, 2021, 33, e2100187.	11.1	432
5	Metal Organic Framework-Templated Synthesis of Bimetallic Selenides with Rich Phase Boundaries for Sodium-Ion Storage and Oxygen Evolution Reaction. ACS Nano, 2019, 13, 5635-5645.	7.3	400
6	A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18209-18236.	5.2	387
7	Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodiumâ€ion Battery Anode. Advanced Energy Materials, 2018, 8, 1703155.	10.2	374
8	Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy, 2019, 61, 617-625.	8.2	340
9	Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. Journal of Materials Chemistry, 2010, 20, 9193.	6.7	316
10	Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. Journal of Materials Chemistry A, 2019, 7, 940-945.	5.2	291
11	Templateâ€Free Synthesis of VO ₂ Hollow Microspheres with Various Interiors and Their Conversion into V ₂ O ₅ for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 2226-2230.	7.2	275
12	Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Materials, 2018, 13, 168-174.	9.5	271
13	Nitrogen-Doped Yolk–Shell-Structured CoSe/C Dodecahedra for High-Performance Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 3624-3633.	4.0	244
14	MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy, 2016, 26, 57-65.	8.2	224
15	Caging Na ₃ V ₂ (PO ₄) ₂ F ₃ Microcubes in Crossâ€Linked Graphene Enabling Ultrafast Sodium Storage and Longâ€Term Cycling. Advanced Science, 2018, 5, 1800680.	5.6	182
16	Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries. Electrochemistry Communications, 2010, 12, 1674-1677.	2.3	173
17	Encapsulation of CoS <i>_x</i> Nanocrystals into N/S Coâ€Doped Honeycombâ€Like 3D Porous Carbon for Highâ€Performance Lithium Storage. Advanced Science, 2018, 5, 1800829.	5.6	172
18	Two-dimensional hybrid nanosheets of few layered MoSe ₂ on reduced graphene oxide as anodes for long-cycle-life lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 15302-15308.	5.2	167

#	Article	IF	CITATIONS
19	Synthesis of Hierarchical Three-Dimensional Vanadium Oxide Microstructures as High-Capacity Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 3874-3879.	4.0	157
20	Templateâ€Assisted Formation of Rattleâ€ŧype V ₂ O ₅ Hollow Microspheres with Enhanced Lithium Storage Properties. Advanced Functional Materials, 2013, 23, 5669-5674.	7.8	154
21	Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy, 2019, 60, 312-323.	8.2	154
22	Metal–organic framework-templated two-dimensional hybrid bimetallic metal oxides with enhanced lithium/sodium storage capability. Journal of Materials Chemistry A, 2017, 5, 13983-13993.	5.2	150
23	Simultaneous Cationic and Anionic Redox Reactions Mechanism Enabling Highâ€Rate Longâ€Life Aqueous Zincâ€Ion Battery. Advanced Functional Materials, 2019, 29, 1905267.	7.8	140
24	Template-free synthesis of ultra-large V2O5 nanosheets with exceptional small thickness for high-performance lithium-ion batteries. Nano Energy, 2015, 13, 58-66.	8.2	135
25	Nitrogen-doped TiO ₂ nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. Journal of Materials Chemistry A, 2016, 4, 18278-18283.	5.2	135
26	Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery. ACS Energy Letters, 2021, 6, 675-683.	8.8	135
27	Antiâ€Corrosive and Znâ€lonâ€Regulating Composite Interlayer Enabling Longâ€Life Zn Metal Anodes. Advanced Functional Materials, 2021, 31, 2104361.	7.8	135
28	Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. Journal of Energy Chemistry, 2021, 55, 549-556.	7.1	132
29	Organic–Inorganic Hybrid Cathode with Dual Energyâ€Storage Mechanism for Ultrahighâ€Rate and Ultralongâ€Life Aqueous Zincâ€Ion Batteries. Advanced Materials, 2022, 34, e2105452.	11.1	129
30	Hierarchical mesoporous MoSe2@CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications. Energy Storage Materials, 2019, 21, 97-106.	9.5	128
31	Electrochemical Activation of Manganeseâ€Based Cathode in Aqueous Zincâ€Ion Electrolyte. Advanced Functional Materials, 2020, 30, 2002711.	7.8	120
32	Chemical Synthesis of 3D Grapheneâ€Like Cages for Sodiumâ€Ion Batteries Applications. Advanced Energy Materials, 2017, 7, 1700797.	10.2	113
33	Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries. Journal of Materials Chemistry, 2011, 21, 10077.	6.7	112
34	Increasing Accessible Subsurface to Improving Rate Capability and Cycling Stability of Sodiumâ€ion Batteries. Advanced Materials, 2021, 33, e2100808.	11.1	110
35	Stable Zinc Metal Anodes with Textured Crystal Faces and Functional Zinc Compound Coatings. Advanced Functional Materials, 2021, 31, 2106114.	7.8	109
36	Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application. Nano Research, 2018, 11, 449-463.	5.8	108

#	Article	IF	CITATIONS
37	Nb ₂ O ₅ quantum dots embedded in MOF derived nitrogen-doped porous carbon for advanced hybrid supercapacitor applications. Journal of Materials Chemistry A, 2016, 4, 17838-17847.	5.2	107
38	Self-templated synthesis of N-doped CoSe2/C double-shelled dodecahedra for high-performance supercapacitors. Energy Storage Materials, 2017, 8, 28-34.	9.5	107
39	Template free synthesis of LiV ₃ O ₈ nanorods as a cathode material for high-rate secondary lithium batteries. Journal of Materials Chemistry, 2011, 21, 1153-1161.	6.7	105
40	Facile synthesis of nanorod-assembled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors. Journal of Power Sources, 2014, 272, 107-112.	4.0	101
41	Tin sulfide nanoparticles embedded in sulfur and nitrogen dual-doped mesoporous carbon fibers as high-performance anodes with battery-capacitive sodium storage. Energy Storage Materials, 2019, 18, 366-374.	9.5	101
42	High-rate cathodes based on Li3V2(PO4)3 nanobelts prepared via surfactant-assisted fabrication. Journal of Power Sources, 2011, 196, 3646-3649.	4.0	100
43	Oxygen-Incorporated MoS ₂ Nanosheets with Expanded Interlayers for Hydrogen Evolution Reaction and Pseudocapacitor Applications. ACS Applied Materials & Interfaces, 2016, 8, 33681-33689.	4.0	94
44	N-S co-doped C@SnS nanoflakes/graphene composite as advanced anode for sodium-ion batteries. Chemical Engineering Journal, 2018, 353, 606-614.	6.6	93
45	Rational design of multi-shelled CoO/Co ₉ S ₈ hollow microspheres for high-performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 18448-18456.	5.2	91
46	Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9153-9160.	5.2	90
47	A Confined Replacement Synthesis of Bismuth Nanodots in MOF Derived Carbon Arrays as Binderâ€Free Anodes for Sodiumâ€ion Batteries. Advanced Science, 2019, 6, 1900162.	5.6	90
48	N-doped one-dimensional carbonaceous backbones supported MoSe2 nanosheets as superior electrodes for energy storage and conversion. Chemical Engineering Journal, 2018, 334, 2190-2200.	6.6	88
49	Yolk-shell structured V2O3 microspheres wrapped in N, S co-doped carbon as pea-pod nanofibers for high-capacity lithium ion batteries. Chemical Engineering Journal, 2019, 374, 545-553.	6.6	86
50	High-performance sodium-ion batteries and flexible sodium-ion capacitors based on Sb ₂ X ₃ (X = O, S)/carbon fiber cloth. Journal of Materials Chemistry A, 2017, 5, 9169-9176.	5.2	84
51	PVP-assisted synthesis of MoS2 nanosheets with improved lithium storage properties. CrystEngComm, 2013, 15, 4998.	1.3	83
52	Uniform MnCo ₂ O ₄ Porous Dumbbells for Lithium-Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 8730-8738.	4.0	83
53	Uniform 8LiFePO 4 ·Li 3 V 2 (PO 4) 3 /C nanoflakes for high-performance Li-ion batteries. Nano Energy, 2016, 22, 48-58.	8.2	80
54	lon migration and defect effect of electrode materials in multivalent-ion batteries. Progress in Materials Science, 2022, 125, 100911.	16.0	79

#	Article	IF	CITATIONS
55	Bismuth nanosheets grown on carbon fiber cloth as advanced binder-free anode for sodium-ion batteries. Electrochemistry Communications, 2017, 81, 10-13.	2.3	78
56	Facile synthesis of Nb2O5/carbon nanocomposites as advanced anode materials for lithium-ion batteries. Electrochimica Acta, 2018, 292, 63-71.	2.6	77
57	<i>In situ</i> formation of Ni ₃ S ₂ –Cu _{1.8} S nanosheets to promote hybrid supercapacitor performance. Journal of Materials Chemistry A, 2019, 7, 11044-11052.	5.2	71
58	Binding MoSe ₂ with dual protection carbon for high-performance sodium storage. Journal of Materials Chemistry A, 2019, 7, 22871-22878.	5.2	69
59	High-performance anode based on porous Co3O4 nanodiscs. Journal of Power Sources, 2014, 255, 125-129.	4.0	67
60	TiO2 nanorods grown on carbon fiber cloth as binder-free electrode for sodium-ion batteries and flexible sodium-ion capacitors. Journal of Power Sources, 2017, 363, 284-290.	4.0	67
61	Hierarchically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong cycle-life sodium ion batteries. Chemical Engineering Journal, 2018, 339, 162-169.	6.6	67
62	S-doped porous carbon confined SnS nanospheres with enhanced electrochemical performance for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 18286-18292.	5.2	67
63	Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries. Science Bulletin, 2019, 64, 261-269.	4.3	63
64	3D printing for rechargeable lithium metal batteries. Energy Storage Materials, 2021, 38, 141-156.	9.5	60
65	Carbon quantum dot modified Na ₃ V ₂ (PO ₄) ₂ F ₃ as a high-performance cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 18872-18879.	5.2	59
66	Hydrothermal synthesis of coherent porous V2O3/carbon nanocomposites for high-performance lithium- and sodium-ion batteries. Science China Materials, 2017, 60, 717-727.	3.5	58
67	Modulation of hydrogel electrolyte enabling stable zinc metal anode. Energy Storage Materials, 2022, 51, 588-598.	9.5	58
68	Nanoflake-assembled three-dimensional Na3V2(PO4)3/C cathode for high performance sodium ion batteries. Chemical Engineering Journal, 2018, 335, 301-308.	6.6	57
69	Tuning Interface Bridging Between MoSe2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability. Nano-Micro Letters, 2020, 12, 171.	14.4	53
70	Ni ₂ P ₂ O ₇ Nanoarrays with Decorated C ₃ N ₄ Nanosheets as Efficient Electrode for Supercapacitors. ACS Applied Energy Materials, 2018, 1, 2016-2023.	2.5	50
71	Fabrication of an Inexpensive Hydrophilic Bridge on a Carbon Substrate and Loading Vanadium Sulfides for Flexible Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 36676-36684. 	4.0	49
72	Interlayer Doping in Layered Vanadium Oxides for Lowâ€cost Energy Storage: Sodiumâ€ion Batteries and Aqueous Zincâ€ion Batteries. ChemNanoMat, 2020, 6, 1553-1566.	1.5	49

#	Article	IF	CITATIONS
73	Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries. Nano Research, 2020, 13, 3330-3337.	5.8	49
74	Enlarged interlayer spacing and enhanced capacitive behavior of a carbon anode for superior potassium storage. Science Bulletin, 2020, 65, 2014-2021.	4.3	47
75	Polypyrrole-Modified NH ₄ NiPO ₄ ·H ₂ O Nanoplate Arrays on Ni Foam for Efficient Electrode in Electrochemical Capacitors. ACS Sustainable Chemistry and Engineering, 2016, 4, 5578-5584.	3.2	46
76	Building Ultra-Stable and Low-Polarization Composite Zn Anode Interface via Hydrated Polyzwitterionic Electrolyte Construction. Nano-Micro Letters, 2022, 14, 93.	14.4	46
77	Nanorod-Nanoflake Interconnected LiMnPO ₄ ·Li ₃ V ₂ (PO ₄) ₃ /C Composite for High-Rate and Long-Life Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 27632-27641.	4.0	44
78	Three-Dimensional Carbon-Coated Treelike Ni ₃ S ₂ Superstructures on a Nickel Foam as Binder-Free Bifunctional Electrodes. ACS Applied Materials & amp; Interfaces, 2018, 10, 36018-36027.	4.0	44
79	Bimetallic organic framework derivation of three-dimensional and heterogeneous metal selenides/carbon composites as advanced anodes for lithium-ion batteries. Nanoscale, 2020, 12, 12623-12631.	2.8	44
80	Ultrathin Na _{1.1} V ₃ O _{7.9} Nanobelts with Superior Performance as Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 8704-8709.	4.0	43
81	Controllable fabrication of urchin-like Co ₃ O ₄ hollow spheres for high-performance supercapacitors and lithium-ion batteries. Dalton Transactions, 2016, 45, 15155-15161.	1.6	43
82	Dodecahedron-Shaped Porous Vanadium Oxide and Carbon Composite for High-Rate Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 17303-17311.	4.0	43
83	Graphene oxide templated nitrogen-doped carbon nanosheets with superior rate capability for sodium ion batteries. Carbon, 2017, 122, 82-91.	5.4	43
84	Template-free synthesis of vanadium oxides nanobelt arrays as high-rate cathode materials for lithium ion batteries. Journal of Power Sources, 2014, 268, 700-705.	4.0	40
85	Carbon-encapsulated MoSe2/C nanorods derived from organic-inorganic hybrid enabling superior lithium/sodium storageÂperformances. Electrochimica Acta, 2018, 292, 339-346.	2.6	40
86	Biodegradable composite polymer as advanced gel electrolyte for quasi-solid-state lithium-metal battery. EScience, 2022, 2, 494-508.	25.0	39
87	One-dimensional coaxial Sb and carbon fibers with enhanced electrochemical performance for sodium-ion batteries. Applied Surface Science, 2018, 428, 448-454.	3.1	37
88	Electrospun Single Crystalline Fork-Like K2V8O21 as High-Performance Cathode Materials for Lithium-lon Batteries. Frontiers in Chemistry, 2018, 6, 195.	1.8	34
89	Architecture design principles for stable electrodeposition behavior-towards better alkali metal (Li/Na/K) anodes. Energy Storage Materials, 2022, 45, 48-73.	9.5	34
90	The general synthesis of Ag nanoparticles anchored on silver vanadium oxides: towards high performance cathodes for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11029-11034.	5.2	33

#	Article	IF	CITATIONS
91	General synthesis of three-dimensional alkali metal vanadate aerogels with superior lithium storage properties. Journal of Materials Chemistry A, 2016, 4, 14408-14415.	5.2	33
92	Facile fabrication of interconnected-mesoporous T-Nb2O5 nanofibers as anodes for lithium-ion batteries. Science China Materials, 2019, 62, 465-473.	3.5	31
93	Rational design of the pea-pod structure of SiO _x /C nanofibers as a high-performance anode for lithium ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 1762-1769.	3.0	31
94	Reduced graphene oxide modified V2O3 with enhanced performance for lithium-ion battery. Materials Letters, 2014, 137, 174-177.	1.3	30
95	Self-templating synthesis of double-wall shelled vanadium oxide hollow microspheres for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 6792-6799.	5.2	30
96	Towards a durable high performance anode material for lithium storage: stabilizing N-doped carbon encapsulated FeS nanosheets with amorphous TiO ₂ . Journal of Materials Chemistry A, 2019, 7, 16541-16552.	5.2	30
97	Vanadiumâ€modified hard carbon spheres with sufficient pseudographitic domains as highâ€performance anode for sodiumâ€ion batteries. , 2023, 5, .		30
98	Novel synthesis of V2O5 hollow microspheres for lithium ion batteries. Science China Materials, 2016, 59, 567-573.	3.5	26
99	Conductivity gradient modulator induced highly reversible Li anodes in carbonate electrolytes for high-voltage lithium-metal batteries. Energy Storage Materials, 2022, 47, 482-490.	9.5	26
100	Template-assisted formation of porous vanadium oxide as high performance cathode materials for lithium ion batteries. Journal of Power Sources, 2015, 295, 254-258.	4.0	25
101	Multi-shelled α-Fe2O3 microspheres for high-rate supercapacitors. Science China Materials, 2016, 59, 247-253.	3.5	25
102	Rational Design and Synthesis of Li ₃ V ₂ (PO ₄) ₃ /C Nanocomposites As High-Performance Cathodes for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 7250-7256.	3.2	25
103	A new strategy to prepare Ge/GeO2-reduced graphene oxide microcubes for high-performance lithium-ion batteries. Electrochimica Acta, 2019, 318, 314-321.	2.6	25
104	Sulfurâ€Doped Carbonâ€Wrapped Heterogeneous Fe ₃ O ₄ /Fe ₇ S ₈ /C Nanoplates as Stable Anode for Lithiumâ€Ion Batteries. Batteries and Supercaps, 2020, 3, 344-353.	2.4	25
105	Melamine-assisted synthesis of ultrafine Mo2C/Mo2N@N-doped carbon nanofibers for enhanced alkaline hydrogen evolution reaction activity. Science China Materials, 2021, 64, 1150-1158.	3.5	25
106	Serpentine Ni ₃ Ge ₂ O ₅ (OH) ₄ Nanosheets with Tailored Layers and Size for Efficient Oxygen Evolution Reactions. Small, 2018, 14, e1803015.	5.2	24
107	A pH-responsive dissociable mesoporous silica-based nanoplatform enabling efficient dual-drug co-delivery and rapid clearance for cancer therapy. Biomaterials Science, 2020, 8, 3418-3429.	2.6	24
108	In Situ Defect Induction in Closeâ€Packed Lattice Plane for the Efficient Zinc Ion Storage. Small, 2021, 17, e2101944.	5.2	24

#	Article	IF	CITATIONS
109	<i>In situ</i> formation of porous graphitic carbon wrapped MnO/Ni microsphere networks as binder-free anodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 12316-12322.	5.2	23
110	Bimetallic phosphides embedded in hierarchical P-doped carbon for sodium ion battery and hydrogen evolution reaction applications. Science China Materials, 2019, 62, 1857-1867.	3.5	23
111	Facile synthesis of sandwich-structured Li3V2(PO4)3/carbon composite as cathodes for high performance lithium-ion batteries. Journal of Alloys and Compounds, 2016, 683, 178-185.	2.8	21
112	Incorporation of LiF into functionalized polymer fiber networks enabling high capacity and high rate cycling of lithium metal composite anodes. Chemical Engineering Journal, 2021, 404, 126508.	6.6	21
113	Cowpea-like N-Doped Silicon Oxycarbide/Carbon Nanofibers as Anodes for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 1677-1686.	2.5	21
114	Facile synthesis of nanosheet-structured V2O5 with enhanced electrochemical performance for high energy lithium-ion batteries. Metals and Materials International, 2014, 20, 983-988.	1.8	20
115	Twin-nanoplate assembled hierarchical Ni/MnO porous microspheres as advanced anode materials for lithium-ion batteries. Electrochimica Acta, 2018, 259, 419-426.	2.6	20
116	Agitation drying synthesis of porous carbon supported Li3VO4 as advanced anode material for lithium-ion batteries. Rare Metals, 2021, 40, 3466-3476.	3.6	20
117	A Facile Carbon Quantum Dotâ€Modified Reduction Approach Towards Tunable Sb@CQDs Nanoparticles for High Performance Sodium Storage. Batteries and Supercaps, 2020, 3, 463-469.	2.4	20
118	Carbon wrapped hierarchical Li3V2(PO4)3 microspheres for high performance lithium ion batteries. Scientific Reports, 2016, 6, 33682.	1.6	19
119	In situ formation of porous LiCuVO4/LiVO3/C nanotubes as a high-capacity anode material for lithium ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 340-346.	3.0	19
120	Controllable Ag Migration To Form One-Dimensional Ag/Ag ₂ S@ZnS for Bifunctional Catalysis. ACS Applied Energy Materials, 2020, 3, 6146-6154.	2.5	18
121	Layered Barium Vanadate Cathodes for Aqueous Zinc Batteries: Enhancing Cycling Stability through Inhibition of Vanadium Dissolution. ACS Applied Energy Materials, 2021, 4, 6197-6204.	2.5	18
122	Controllable Preparation of V2O5/Graphene Nanocomposites as Cathode Materials for Lithium-Ion Batteries. Nanoscale Research Letters, 2016, 11, 549.	3.1	17
123	Intelligent Nanoplatform with Multi Therapeutic Modalities for Synergistic Cancer Therapy. ACS Applied Materials & Interfaces, 2022, 14, 13122-13135.	4.0	17
124	Template-free synthesis of β-Na _{0.33} V ₂ O ₅ microspheres as cathode materials for lithium-ion batteries. CrystEngComm, 2015, 17, 4774-4780.	1.3	16
125	Inâ€situ Copper Doping with ZnO/ZnS Heterostructures to Promote Interfacial Photocatalysis of Microsized Particles. ChemCatChem, 2021, 13, 564-573.	1.8	16
126	Enveloping a Si/N-doped carbon composite in a CNT-reinforced fibrous network as flexible anodes for high performance lithium-ion batteries. Inorganic Chemistry Frontiers, 2021, 8, 4386-4394.	3.0	15

#	Article	IF	CITATIONS
127	Vertically oriented Sn ₃ O ₄ nanoflakes directly grown on carbon fiber cloth for high-performance lithium storage. Inorganic Chemistry Frontiers, 2019, 6, 1468-1474.	3.0	14
128	A one-pot synthesis of hetero-Co ₉ S ₈ –NiS sheets on graphene to boost lithium–sulfur battery performance. Inorganic Chemistry Frontiers, 2020, 7, 2160-2167.	3.0	12
129	Unusual Formation of CoS _{0.61} Se _{0.25} Anion Solid Solution with Sulfur Defects to Promote Electrocatalytic Water Reduction. ACS Applied Energy Materials, 2021, 4, 2976-2982.	2.5	12
130	Rational synthesis of SnS2@C hollow microspheres with superior stability for lithium-ion batteries. Science China Materials, 2017, 60, 955-962.	3.5	11
131	Fabrication of Si Nanoparticles@Carbon Fibers Composites from Natural Nanoclay as an Advanced Lithium-Ion Battery Flexible Anode. Minerals (Basel, Switzerland), 2018, 8, 180.	0.8	11
132	Autocatalytic oncotherapy nanosystem with glucose depletion for the cascade amplification of hypoxia-activated chemotherapy and H ₂ O ₂ -dependent chemodynamic therapy. Biomaterials Science, 2022, 10, 2358-2369.	2.6	10
133	Sodiumâ€lon Batteries: Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodiumâ€lon Battery Anode (Adv. Energy Mater. 19/2018). Advanced Energy Materials, 2018, 8, 1870092.	10.2	9
134	Enriching surface oxygen vacancies of spinel Co ₃ O ₄ to boost H ₂ O adsorption for HER in alkaline media. Materials Advances, 2021, 2, 7054-7063.	2.6	9
135	Liquid Alloying Na–K for Sodium Metal Anodes. Journal of Physical Chemistry Letters, 2021, 12, 9321-9327.	2.1	9
136	pH-Responsive size-shrinkable mesoporous silica-based nanocarriers for improving tumor penetration and therapeutic efficacy. Nanoscale, 2022, 14, 1271-1284.	2.8	9
137	Green and Facile Preparation of Carbonâ€Coated TiO ₂ Nanosheets for Highâ€Performance Sodiumâ€Ion Batteries. Energy Technology, 2018, 6, 759-765.	1.8	5
138	Hierarchical 1D/2D V ₃ S ₄ @N, S-Codoped rGO Hybrids as High-Performance Anode Materials for Fast and Stable Lithium-Ion Storage. ACS Applied Energy Materials, 2022, 5, 4722-4732.	2.5	5
139	Naâ€lon Batteries: A Confined Replacement Synthesis of Bismuth Nanodots in MOF Derived Carbon Arrays as Binderâ€Free Anodes for Sodiumâ€lon Batteries (Adv. Sci. 16/2019). Advanced Science, 2019, 6, 1970098.	5.6	4
140	Sulfurâ€Doped Carbonâ€Wrapped Heterogeneous Fe 3 O 4 /Fe 7 S 8 /C Nanoplates as Stable Anode for Lithiumâ€ l on Batteries. Batteries and Supercaps, 2020, 3, 308-308.	2.4	3
141	Cathode Materials for Rechargeable Aqueous Zn Batteries. , 2022, , .		1
142	Multichannel Ca ²⁺ Generator for Synergistic Tumor Therapy via Intracellular Ca ²⁺ Overload and Chemotherapy. Langmuir, 0, , .	1.6	1