
Philip M Beart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6034492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Transporters. British Journal of Pharmacology, 2021, 178, S412-S513.	5.4	114
2	Neuro-nutraceuticals: Natural products nourish the brain but be aware of contrary effects. Neurochemistry International, 2021, 150, 105159.	3.8	5
3	The origins and early history of neurochemistry and its societies. Journal of Neurochemistry, 2020, 152, 8-28.	3.9	3
4	Amyotrophic Lateral Sclerosis and Autophagy: Dysfunction and Therapeutic Targeting. Cells, 2020, 9, 2413.	4.1	41
5	Mutant TDP-43 Expression Triggers TDP-43 Pathology and Cell Autonomous Effects on Primary Astrocytes: Implications for Non-cell Autonomous Pathology in ALS. Neurochemical Research, 2020, 45, 1451-1459.	3.3	7
6	Special Issue in Honour of Michael B Robinson. Neurochemical Research, 2020, 45, 1245-1246.	3.3	0
7	Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. Journal of Neurochemistry, 2020, 154, 354-371.	3.9	83
8	LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease. Human Molecular Genetics, 2019, 28, 1645-1660.	2.9	114
9	Inflammation in Traumatic Brain Injury: Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk. Neurochemical Research, 2019, 44, 1410-1424.	3.3	82
10	Inhibition of bioenergetics provides novel insights into recruitment of <scp>PINK</scp> 1â€dependent neuronal mitophagy. Journal of Neurochemistry, 2019, 149, 269-283.	3.9	10
11	Kazuhiro Ikenaka (1952–2018). Journal of Neurochemistry, 2019, 149, 158-159.	3.9	0
12	Mitochondria in the nervous system: From health to disease, part II. Neurochemistry International, 2018, 117, 1-4.	3.8	6
13	Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression. Autophagy, 2018, 14, 534-551.	9.1	66
14	SOD1 Mutations Causing Familial Amyotrophic Lateral Sclerosis Induce Toxicity in Astrocytes: Evidence for Bystander Effects in a Continuum of Astrogliosis. Neurochemical Research, 2018, 43, 166-179.	3.3	12
15	Glutathione monoethyl ester prevents TDP-43 pathology in motor neuronal NSC-34Âcells. Neurochemistry International, 2018, 112, 278-287.	3.8	15
16	MDMA-induced neurotoxicity of serotonin neurons involves autophagy and rilmenidine is protective against its pathobiology. Neurochemistry International, 2017, 105, 80-90.	3.8	38
17	Galactose-functionalised PCL nanofibre scaffolds to attenuate inflammatory action of astrocytes in vitro and in vivo. Journal of Materials Chemistry B, 2017, 5, 4073-4083.	5.8	12
18	Mitochondria in the nervous system: From health to disease, Part I. Neurochemistry International, 2017, 109, 1-4.	3.8	7

PHILIP M BEART

#	Article	IF	CITATIONS
19	Modulating Astrocyte Transition after Stroke to Promote Brain Rescue and Functional Recovery: Emerging Targets Include Rho Kinase. International Journal of Molecular Sciences, 2016, 17, 288.	4.1	45
20	Synaptic signalling and its interface with neuropathologies: snapshots from the past, present and future. Journal of Neurochemistry, 2016, 139, 76-90.	3.9	7
21	Neuro-nutraceuticals: Further insights into their promise for brain health. Neurochemistry International, 2016, 95, 1-3.	3.8	21
22	Walking the tightrope: proteostasis and neurodegenerative disease. Journal of Neurochemistry, 2016, 137, 489-505.	3.9	176
23	Evidence for the recruitment of autophagic vesicles in human brain after stroke. Neurochemistry International, 2016, 96, 62-68.	3.8	16
24	Comparative Microarray Analysis Identifies Commonalities in Neuronal Injury: Evidence for Oxidative Stress, Dysfunction of Calcium Signalling, and Inhibition of Autophagy–Lysosomal Pathway. Neurochemical Research, 2016, 41, 554-567.	3.3	16
25	Transcriptomic analysis and 3D bioengineering of astrocytes indicate ROCK inhibition produces cytotrophic astrogliosis. Frontiers in Neuroscience, 2015, 9, 50.	2.8	19
26	Silent information regulator 1 modulator resveratrol increases brain lactate production and inhibits mitochondrial metabolism, whereas SRT1720 increases oxidative metabolism. Journal of Neuroscience Research, 2015, 93, 1147-1156.	2.9	19
27	Neuro-nutraceuticals: The path to brain health via nourishment is not so distant. Neurochemistry International, 2015, 89, 1-6.	3.8	38
28	3D Electrospun scaffolds promote a cytotrophic phenotype of cultured primary astrocytes. Journal of Neurochemistry, 2014, 130, 215-226.	3.9	47
29	Gene expression profiling of rotenone-mediated cortical neuronal death: Evidence for inhibition of ubiquitin–proteasome system and autophagy-lysosomal pathway, and dysfunction of mitochondrial and calcium signaling. Neurochemistry International, 2013, 62, 653-663.	3.8	19
30	Transitory phases of autophagic death and programmed necrosis during superoxide-induced neuronal cell death. Free Radical Biology and Medicine, 2012, 53, 1960-1967.	2.9	22
31	Combined excitotoxic–oxidative stress and the concept of non-cell autonomous pathology of ALS: Insights into motoneuron axonopathy and astrogliosis. Neurochemistry International, 2012, 61, 523-530.	3.8	13
32	Multifaceted role of nitric oxide in anâ€, <i>in vitro</i> â€,mouse neuronal injury model: transcriptomic profiling defines the temporal recruitment of death signalling cascades. Journal of Cellular and Molecular Medicine, 2012, 16, 41-58.	3.6	4
33	Transcriptomic profiling of astrocytes treated with the Rho kinase inhibitor Fasudil reveals cytoskeletal and proâ€survival responses. Journal of Cellular Physiology, 2012, 227, 1199-1211.	4.1	47
34	A Three Dimensional Receptor Model of the Dopamine D2 Receptor from Computer Graphic Analyses of D2 Agonists. Journal of Pharmacy and Pharmacology, 2011, 40, 422-428.	2.4	14
35	Autophagic activity in cortical neurons under acute oxidative stress directly contributes to cell death. Cellular and Molecular Life Sciences, 2011, 68, 3725-3740.	5.4	44
36	Gene profiling reveals hydrogen sulphide recruits death signaling via the Nâ€methylâ€ <scp>D</scp> â€aspartate receptor identifying commonalities with excitotoxicity. Journal of Cellular Physiology, 2011, 226, 1308-1322.	4.1	30

PHILIP M BEART

#	Article	IF	CITATIONS
37	Oxidative Stress: Emerging Mitochondrial and Cellular Themes and Variations in Neuronal Injury. Journal of Alzheimer's Disease, 2010, 20, S453-S473.	2.6	129
38	Transportable and Non-transportable Inhibitors of L-glutamate Uptake Produce Astrocytic Stellation and Increase EAAT2 Cell Surface Expression. Neurochemical Research, 2010, 35, 735-742.	3.3	16
39	Multifaceted deaths orchestrated by mitochondria in neurones. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 167-185.	3.8	92
40	Oxidative and excitotoxic insults exert differential effects on spinal motoneurons and astrocytic glutamate transporters: Implications for the role of astrogliosis in amyotrophic lateral sclerosis. Glia, 2009, 57, 119-135.	4.9	33
41	Graham Johnston: Bringing Success to Neuroscience Through Medicinal Chemistry. Neurochemical Research, 2009, 34, 1696-1697.	3.3	0
42	Oxidative stress triggers neuronal caspase-independent death: Endonuclease G involvement in programmed cell death-type III. Cellular and Molecular Life Sciences, 2009, 66, 2773-2787.	5.4	44
43	GABAergic striatal neurons exhibit caspaseâ€independent, mitochondrially mediated programmed cell death. Journal of Neurochemistry, 2009, 109, 198-206.	3.9	10
44	Rotenone and MPP+ preferentially redistribute apoptosis-inducing factor in apoptotic dopamine neurons. NeuroReport, 2007, 18, 307-312.	1.2	19
45	Hierarchical recruitment by AMPA but not staurosporine of pro-apoptotic mitochondrial signaling in cultured cortical neurons: evidence for caspase-dependent/independent cross-talk. Journal of Neurochemistry, 2007, 103, 2408-2427.	3.9	21
46	Relative timing of redistribution of cytochrome c and Smac/DIABLO from mitochondria during apoptosis assessed by double immunocytochemistry on mammalian cells. Experimental Cell Research, 2006, 312, 1174-1184.	2.6	20
47	Effects of lipopolysaccharide on glial phenotype and activity of glutamate transporters: Evidence for delayed up-regulation and redistribution of GLT-1. Neurochemistry International, 2006, 48, 604-610.	3.8	55
48	Induction of the Unfolded Protein Response in Familial Amyotrophic Lateral Sclerosis and Association of Protein-disulfide Isomerase with Superoxide Dismutase 1. Journal of Biological Chemistry, 2006, 281, 30152-30165.	3.4	252
49	Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochemical Pharmacology, 2005, 69, 339-345.	4.4	230
50	Regulation of glutamate transporters in astrocytes: Evidence for a relationship between transporter expression and astrocytic phenotype. Neurotoxicity Research, 2005, 7, 143-149.	2.7	30
51	Hypoxic preconditioning in neonatal rat brain involves regulation of excitatory amino acid transporter 2 and estrogen receptor alpha. Neuroscience Letters, 2005, 385, 52-57.	2.1	43
52	Binding and transport of [3H](2S,4R)- 4-methylglutamate, a new ligand for glutamate transporters, demonstrate labeling of EAAT1 in cultured murine astrocytes. Journal of Neuroscience Research, 2004, 75, 751-759.	2.9	34
53	Astrocyte mGlu2/3-mediated cAMP potentiation is calcium sensitive: studies in murine neuronal and astrocyte cultures. Neuropharmacology, 2002, 43, 189-203.	4.1	40
54	Evaluation of drugs acting at glutamate transporters in organotypic hippocampal cultures: new evidence on substrates and blockers in excitotoxicity. Neurochemical Research, 2002, 27, 5-13.	3.3	26

PHILIP M BEART

#	Article	IF	CITATIONS
55	[3H](2S,4R)-4-Methylglutamate: a novel ligand for the characterization of glutamate transporters. Journal of Neurochemistry, 2001, 77, 1218-1225.	3.9	34
56	Incorporation of sodium channel blocking and free radical scavenging activities into a single drug, AM-36, results in profound inhibition of neuronal apoptosis. British Journal of Pharmacology, 2001, 132, 1691-1698.	5.4	43
57	Low-affinity kainate receptor agonists induce insult-dependent apoptosis and necrosis in cultured murine cortical neurons. Journal of Neuroscience Research, 2000, 59, 788-796.	2.9	28
58	Type I and II metabotropic glutamate receptor agonists and antagonists evoke cardiovascular effects after intrathecal administration in conscious rats. British Journal of Pharmacology, 1999, 128, 823-829.	5.4	10
59	Development of a novel arylalkylpiperazine compound (AM-36) as a hybrid neuroprotective drug. Drug Development Research, 1999, 46, 261-267.	2.9	15
60	Delayed Treatment With AM-36, a Novel Neuroprotective Agent, Reduces Neuronal Damage After Endothelin-1–Induced Middle Cerebral Artery Occlusion in Conscious Rats. Stroke, 1999, 30, 2704-2712.	2.0	64
61	Cyclothiazide and AMPA receptor desensitization: analyses from studies of AMPA-induced release of [3 H]-noradrenaline from hippocampal slices. British Journal of Pharmacology, 1998, 123, 473-480.	5.4	19
62	Micromolar l-glutamate induces extensive apoptosis in an apoptotic-necrotic continuum of insult-dependent, excitotoxic injury in cultured cortical neurones. Neuropharmacology, 1998, 37, 1419-1429.	4.1	163
63	Kainateâ€Induced Apoptosis in Cultured Murine Cerebellar Granule Cells Elevates Expression of the Cell Cycle Gene Cyclin D1. Journal of Neurochemistry, 1998, 71, 1325-1328.	3.9	54
64	Apoptosis Induced via AMPAâ€Selective Glutamate Receptors in Cultured Murine Cortical Neurons. Journal of Neurochemistry, 1997, 69, 617-622.	3.9	60
65	(S)-5-Fluorowillardiine-mediated neurotoxicity in cultured murine cortical neurones occurs via AMPA and kainate receptors. European Journal of Pharmacology, 1996, 314, 249-254.	3.5	34
66	Electrophysiological studies of the cholecystokininA receptor antagonists SR27897B and PD140548 in the rat isolated nodose ganglion. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 353, 693-697.	3.0	7
67	Blockade by polyamine NMDA antagonists related to ifenprodil of NMDAâ€induced synthesis of cyclic GMP, increases in calcium and cytotoxicity in cultured neurones. British Journal of Pharmacology, 1995, 114, 1359-1364.	5.4	6
68	Roles for Nitric Oxide as an Intra―and Interneuronal Messenger at NMDA Releaseâ€Regulating Receptors: Evidence from Studies of the NMDAâ€Evoked Release of [³ H]Noradrenaline and <scp>d</scp> â€[³ H]Aspartate from Rat Hippocampal Slices. Journal of Neurochemistry, 1995, 64, 2057-2063.	3.9	36
69	Regulation of ?-Receptors: High- and Low-Affinity Agonist States, GTP Shifts, and Up-Regulation by Rimcazole and 1,3-Di(2-Tolyl)guanidine. Journal of Neurochemistry, 1989, 53, 779-788.	3.9	91
70	DOPAMINE RECEPTORS: CLASSIFICATION, PROPERTIES AND DRUG DEVELOPMENT. Clinical and Experimental Pharmacology and Physiology, 1989, 16, 511-515.	1.9	11
71	COMPARISON OF THE PROPERTIES OF [3H]-d-2-AMINO-5-PHOSPHONOPENTANOIC ACID AND [3H]-dl-2-AMINO-7-PHOSPHONOHEPTANOIC ACID BINDING TO HOMOGENATES OF RAT CEREBRAL CORTEX. Clinical and Experimental Pharmacology and Physiology, 1989, 16, 49-58.	1.9	4
72	Roles for glutamate and norepinephrine in limbic circuitry and psychopathology. Behavioral and Brain Sciences, 1987, 10, 208-209.	0.7	2