
Xufang Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6034449/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4251-E4260.	7.1	297
2	Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8094-8103.	7.1	230
3	Assessing Activity and Inhibition of Middle East Respiratory Syndrome Coronavirus Papain-Like and 3C-Like Proteases Using Luciferase-Based Biosensors. Journal of Virology, 2013, 87, 11955-11962.	3.4	130
4	An "Old―protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses. Virology, 2018, 517, 157-163.	2.4	122
5	Catalytic Function and Substrate Specificity of the Papain-Like Protease Domain of nsp3 from the Middle East Respiratory Syndrome Coronavirus. Journal of Virology, 2014, 88, 12511-12527.	3.4	116
6	Coronavirus Endoribonuclease Activity in Porcine Epidemic Diarrhea Virus Suppresses Type I and Type III Interferon Responses. Journal of Virology, 2019, 93, .	3.4	94
7	Nonstructural Protein 1 of Influenza A Virus Interacts with Human Guanylate-Binding Protein 1 to Antagonize Antiviral Activity. PLoS ONE, 2013, 8, e55920.	2.5	86
8	Coronaviruses Resistant to a 3C-Like Protease Inhibitor Are Attenuated for Replication and Pathogenesis, Revealing a Low Genetic Barrier but High Fitness Cost of Resistance. Journal of Virology, 2014, 88, 11886-11898.	3.4	81
9	Nitazoxanide inhibits the replication of Japanese encephalitis virus in cultured cells and in a mouse model. Virology Journal, 2014, 11, 10.	3.4	58
10	Murine Coronavirus Ubiquitin-Like Domain Is Important for Papain-Like Protease Stability and Viral Pathogenesis. Journal of Virology, 2015, 89, 4907-4917.	3.4	50
11	The Meq oncoprotein of Marek's disease virus interacts with p53 and inhibits its transcriptional and apoptotic activities. Virology Journal, 2010, 7, 348.	3.4	47
12	Stabilization of p53 in Influenza A Virus-infected Cells Is Associated with Compromised MDM2-mediated Ubiquitination of p53. Journal of Biological Chemistry, 2012, 287, 18366-18375.	3.4	47
13	Transcriptional analysis of immune-related gene expression in p53-deficient mice with increased susceptibility to influenza A virus infection. BMC Medical Genomics, 2015, 8, 52.	1.5	39
14	Coronavirus Endoribonuclease and Deubiquitinating Interferon Antagonists Differentially Modulate the Host Response during Replication in Macrophages. Journal of Virology, 2020, 94, .	3.4	33
15	Analysis of Coronavirus Temperature-Sensitive Mutants Reveals an Interplay between the Macrodomain and Papain-Like Protease Impacting Replication and Pathogenesis. Journal of Virology, 2019, 93, .	3.4	28
16	Inactivating Three Interferon Antagonists Attenuates Pathogenesis of an Enteric Coronavirus. Journal of Virology, 2020, 94, .	3.4	23
17	Structure-Guided Mutagenesis Alters Deubiquitinating Activity and Attenuates Pathogenesis of a Murine Coronavirus. Journal of Virology, 2020, 94, .	3.4	20
18	Characterization of nonstructural protein 3 of a neurovirulent Japanese encephalitis virus strain isolated from a pig. Virology Journal, 2011, 8, 209.	3.4	18

XUFANG DENG

#	Article	IF	CITATIONS
19	A Chimeric Virus-Mouse Model System for Evaluating the Function and Inhibition of Papain-Like Proteases of Emerging Coronaviruses. Journal of Virology, 2014, 88, 11825-11833.	3.4	18
20	Breakthrough Infections with Multiple Lineages of SARS-CoV-2 Variants Reveals Continued Risk of Severe Disease in Immunosuppressed Patients. Viruses, 2021, 13, 1743.	3.3	15
21	p53 promotes ZDHHC1-mediated IFITM3 palmitoylation to inhibit Japanese encephalitis virus replication. PLoS Pathogens, 2020, 16, e1009035.	4.7	15
22	Engineering, expression, and immuno-characterization of recombinant protein comprising multi-neutralization sites of rabies virus glycoprotein. Protein Expression and Purification, 2010, 70, 179-183.	1.3	5
23	Tumor suppressor p53 functions as an essential antiviral molecule against Japanese encephalitis virus. Journal of Genetics and Genomics, 2016, 43, 709-712.	3.9	5
24	Development and utilization of an infectious clone for porcine deltacoronavirus strain USA/IL/2014/026. Virology, 2021, 553, 35-45.	2.4	5
25	MDV-1 VP22: a transporter that can selectively deliver proteins into cells. Archives of Virology, 2009, 154, 1027-1034.	2.1	3
26	MDV-1 VP22 conjugated VP2 enhancing immune response against infectious bursal disease virus by DNA vaccination in mice. Science in China Series C: Life Sciences, 2008, 51, 981-986.	1.3	2