C M Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6034357/c-m-wang-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13,456 489 56 96 h-index g-index citations papers 6.85 15,009 515 3.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
489	Analytical solutions of hydroelastic interactions between waves and submerged open-net fish cage modeled as a porous cylindrical thin shell. <i>Physics of Fluids</i> , 2022 , 34, 017104	4.4	6
488	Finite element - Multi-domain boundary element method for hydroelastic analysis of large floating pontoons with perforated plates. <i>Ocean Engineering</i> , 2022 , 246, 110659	3.9	0
487	Hencky bar-grid model and Hencky bar-net model for buckling analysis of rectangular plates 2022 , 75-	107	O
486	Plastic buckling of plates 2022 , 237-267		
485	Potential flow theory-based analytical and numerical modelling of porous and perforated breakwaters: A review. <i>Ocean Engineering</i> , 2022 , 249, 110897	3.9	2
484	A frequency domain approach for analyzing motion responses of integrated offshore fish cage and wind turbine under wind and wave actions. <i>Aquacultural Engineering</i> , 2022 , 97, 102241	3	1
483	Prediction of Elastic-Softening-Debonding behavior for CFRP Tendon-Adhesively bonded anchors. <i>Structures</i> , 2022 , 40, 659-666	3.4	O
482	Floating forest: A novel breakwater-windbreak structure against wind and wave hazards. <i>Frontiers of Structural and Civil Engineering</i> , 2021 , 15, 1111	2.5	2
481	Coupled analytical-numerical approach for determining hydrodynamic responses of breakwater with multiple OWCs. <i>Marine Structures</i> , 2021 , 80, 103097	3.8	O
480	Comparison of Numerical and Semi-analytical Dynamic Results for Inclined Beam Under Moving Load. <i>Lecture Notes in Civil Engineering</i> , 2021 , 1075-1085	0.3	
479	Representative Transmission Coefficient for Evaluating the Wave Attenuation Performance of 3D Floating Breakwaters in Regular and Irregular Waves. <i>Journal of Marine Science and Engineering</i> , 2021 , 9, 388	2.4	5
478	Predicting far-lee wind flow characteristics behind a 2D wedge-shaped obstacle: Experiments, numerical simulations and empirical equations. <i>Building and Environment</i> , 2021 , 194, 107673	6.5	0
477	Hencky Bar-Grid Model for Plane Stress Elasticity Problems. <i>Journal of Engineering Mechanics - ASCE</i> , 2021 , 147, 04021021	2.4	3
476	Hencky Bar-Chain Model for Buckling Analysis and Optimal Design of Trapezoidal Arches 2021 , 229-24	7	
475	Elasticity solutions for nano-plane structures under body forces using lattice elasticity, continualised nonlocal model and Eringen nonlocal model. <i>Continuum Mechanics and Thermodynamics</i> , 2021 , 33, 2453-2480	3.5	2
474	Design development of porous collar barrier for offshore floating fish cage against wave action, debris and predators. <i>Aquacultural Engineering</i> , 2021 , 92, 102137	3	1
473	Examination of net volume reduction of gravity-type open-net fish cages under sea currents. <i>Aquacultural Engineering</i> , 2021 , 92, 102128	3	8

472	Lattice-Based Nonlocal Elastic Structural Models. Springer Tracts in Mechanical Engineering, 2021, 1-50	0.3	1
471	Modelling wide perforated breakwater with horizontal slits using Hybrid-BEM method. <i>Ocean Engineering</i> , 2021 , 222, 108630	3.9	4
470	Research and development in connector systems for Very Large Floating Structures. <i>Ocean Engineering</i> , 2021 , 232, 109150	3.9	4
469	Hydrodynamic Behaviour of Floating Polygonal Platforms under Wave Action. <i>Journal of Marine Science and Engineering</i> , 2021 , 9, 923	2.4	1
468	Moving internal node element method for dynamic analysis of beam structure under moving vehicle. <i>Journal of Sound and Vibration</i> , 2021 , 511, 116348	3.9	1
467	A Semi-Analytical Model for Studying Hydroelastic Behaviour of a Cylindrical Net Cage under Wave Action. <i>Journal of Marine Science and Engineering</i> , 2021 , 9, 1445	2.4	3
466	Elastic In-Plane Buckling of Funicular Arches. <i>International Journal of Structural Stability and Dynamics</i> , 2020 , 20, 2041014	1.9	0
465	Hydrodynamics study on rectangular porous breakwater with horizontal internal water channels. Journal of Ocean Engineering and Marine Energy, 2020 , 6, 377-398	1.5	4
464	Extensible beam-like metastructures at the microscale: Theoretical and modified Hencky bar-chain modeling. <i>International Journal of Mechanical Sciences</i> , 2020 , 180, 105636	5.5	3
463	Optimal Design of Triangular Arches against Buckling. <i>Journal of Engineering Mechanics - ASCE</i> , 2020 , 146, 04020059	2.4	1
462	Heaving wave energy converter-type attachments to a pontoon-type very large floating structure. <i>Engineering Structures</i> , 2020 , 219, 110964	4.7	4
461	Nonlinear vibrations of graphene piezoelectric microsheet under coupled excitations. <i>International Journal of Non-Linear Mechanics</i> , 2020 , 124, 103498	2.8	7
460	Hydrodynamic Response Analysis of Combined Spar Wind Turbine and Fish Cage for Offshore Fish Farms. <i>International Journal of Structural Stability and Dynamics</i> , 2020 , 20, 2050104	1.9	6
459	Review of models for predicting wind characteristics behind windbreaks. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 2020 , 199, 104117	3.7	5
458	Optimal design of steel buckling-restrained braces considering stiffness and strength requirements. <i>Engineering Structures</i> , 2020 , 211, 110437	4.7	14
457	Vibration Absorber for Spring-Mass System Using a Hanging Heavy Column with Rotationally Restrained End. <i>Journal of Engineering Mechanics - ASCE</i> , 2020 , 146, 06020001	2.4	
456	Review of cage and containment tank designs for offshore fish farming. <i>Aquaculture</i> , 2020 , 519, 734928	8 4.4	50
455	Further insights into moving load problem on inclined beam based on semi-analytical solution. <i>Structures</i> , 2020 , 26, 247-256	3.4	9

454	Oscillating Wave Surge Converter-Type Attachment for Extracting Wave Energy While Reducing Hydroelastic Responses of Very Large Floating Structures. <i>Journal of Offshore Mechanics and Arctic Engineering</i> , 2020 , 142,	1.5	2	
453	Floating Solutions for Challenges Facing Humanity. Lecture Notes in Civil Engineering, 2020, 3-29	0.3		
452	Vibration of a Segmented Rod. International Journal of Structural Stability and Dynamics, 2020 , 20, 207	10:14	O	
45 ¹	Fatigue Design Criteria for Adhesively Bonded Anchorage for CFRP Tendon. <i>Lecture Notes in Civil Engineering</i> , 2020 , 373-384	0.3	1	
450	Uncovering Physical Structural Model Behind Finite Difference Model for Vibration Analysis of Plates. <i>Lecture Notes in Civil Engineering</i> , 2020 , 245-254	0.3		
449	A Pitching WEC-Type Attachment for Extracting Wave Energy and Reducing Hydroelastic Response of VLFS. <i>Lecture Notes in Civil Engineering</i> , 2020 , 199-207	0.3	2	
448	Integrally hydrophobic cementitious composites made with waste amorphous carbon powder. <i>Construction and Building Materials</i> , 2020 , 233, 117238	6.7	12	
447	Two-mode WEC-type attachment for wave energy extraction and reduction of hydroelastic response of pontoon-type VLFS. <i>Ocean Engineering</i> , 2020 , 197, 106875	3.9	4	
446	Experimental study on wedge-bonded anchors for CFRP tendons under cyclic loading. <i>Construction and Building Materials</i> , 2020 , 236, 117599	6.7	3	
445	An enhanced Hencky bar-chain model for bending, buckling and vibration analyses of Reddy beams. <i>Engineering Structures</i> , 2020 , 221, 111056	4.7	5	
444	Dynamic Stability and Response of Inclined Beams Under Moving Mass and Follower Force. <i>International Journal of Structural Stability and Dynamics</i> , 2020 , 20, 2043004	1.9	3	
443	Wave energy converter and large floating platform integration: A review. <i>Ocean Engineering</i> , 2020 , 213, 107768	3.9	24	
442	Calibration of Eringen's small length scale coefficient for buckling circular and annular plates via Hencky bar-net model. <i>Applied Mathematical Modelling</i> , 2020 , 78, 399-417	4.5	1	
441	Floating Forest: A Novel Concept of Floating Breakwater-Windbreak Structure. <i>Lecture Notes in Civil Engineering</i> , 2020 , 219-234	0.3	2	
440	Hencky Bar-Chain model for buckling analysis of non-symmetric portal frames. <i>Engineering Structures</i> , 2019 , 182, 391-402	4.7	7	
439	Extracting energy while reducing hydroelastic responses of VLFS using a modular raft wec-type attachment. <i>Applied Ocean Research</i> , 2019 , 84, 302-316	3.4	14	
438	Scale effect and higher-order boundary conditions for generalized lattices, with direct and indirect interactions. <i>Mechanics Research Communications</i> , 2019 , 97, 1-7	2.2	15	
437	Dynamic response and stability of an inclined Euler beam under a moving vertical concentrated load. <i>Engineering Structures</i> , 2019 , 186, 243-254	4.7	17	

(2018-2019)

436	Matrix Method for Buckling Analysis of Frames Based on Hencky Bar-Chain Model. <i>International Journal of Structural Stability and Dynamics</i> , 2019 , 19, 1950093	1.9	4
435	Modeling joints with multiple members in Hencky bar-chain model for buckling analysis of frames. <i>International Journal of Mechanical Sciences</i> , 2019 , 164, 105165	5.5	1
434	Moving offshore for fish farming. Journal of Aquaculture & Marine Biology, 2019, 8, 38-39	0.2	5
433	Hydrodynamic Analysis of Partially Filled Liquid Tanks Subject to 3D Vehicular Manoeuvring. <i>Shock and Vibration</i> , 2019 , 2019, 1-14	1.1	2
432	Large Floating Structure with Free-Floating, Self-Stabilizing Tanks for Hydrocarbon Storage. <i>Energies</i> , 2019 , 12, 3487	3.1	9
431	Comparison of nano-plate bending behaviour by Eringen nonlocal plate, Hencky bar-net and continualised nonlocal plate models. <i>Acta Mechanica</i> , 2019 , 230, 885-907	2.1	11
430	Exact and nonlocal solutions for vibration of multiply connected bar-chain system with direct and indirect neighbouring interactions. <i>Journal of Sound and Vibration</i> , 2019 , 443, 63-73	3.9	8
429	Prediction and optimization of stress distribution in bonded anchors for CFRP tendons. <i>Engineering Structures</i> , 2019 , 180, 50-66	4.7	11
428	Optimization of modular raft WEC-type attachment to VLFS and module connections for maximum reduction in hydroelastic response and wave energy production. <i>Ocean Engineering</i> , 2019 , 172, 407-421	3.9	9
427	Buckling of multiply connected bar-chain and its associated continualized nonlocal model. <i>International Journal of Mechanical Sciences</i> , 2019 , 150, 168-175	5.5	9
426	Reducing hydroelastic responses of pontoon-type VLFS using vertical elastic mooring lines. <i>Marine Structures</i> , 2018 , 59, 251-270	3.8	18
425	Analysis and design of floating prestressed concrete structures in shallow waters. <i>Marine Structures</i> , 2018 , 59, 301-320	3.8	19
424	Review of recent research and developments on floating breakwaters. <i>Ocean Engineering</i> , 2018 , 158, 132-151	3.9	79
423	Modelling vibrating nano-strings by lattice, finite difference and Eringen's nonlocal models. <i>Journal of Sound and Vibration</i> , 2018 , 425, 41-52	3.9	10
422	Hencky Bar-Net Model for Vibration of Rectangular Plates with Mixed Boundary Conditions and Point Supports. <i>International Journal of Structural Stability and Dynamics</i> , 2018 , 18, 1850046	1.9	9
421	Hencky bar-net model for buckling analysis of plates under non-uniform stress distribution. <i>Thin-Walled Structures</i> , 2018 , 122, 344-358	4.7	8
420	Vibration of laminated-beams based on reference-plane formulation: Effect of end supports at different heights of the beam. <i>Engineering Structures</i> , 2018 , 159, 245-251	4.7	2
419	Hencky bar-chain model for optimal circular arches against buckling. <i>Mechanics Research Communications</i> , 2018 , 88, 7-11	2.2	10

418	Global dynamic response analysis of oil storage tank in finite water depth: Focusing on fender mooring system parameter design. <i>Ocean Engineering</i> , 2018 , 148, 247-262	3.9	15
417	Exact and Nonlocal Solutions for Vibration of Axial Lattice with Direct and Indirect Neighboring Interactions. <i>Journal of Engineering Mechanics - ASCE</i> , 2018 , 144, 04018025	2.4	9
416	Improvement of mechanical properties by incorporating graphene oxide into cement mortar. <i>Mechanics of Advanced Materials and Structures</i> , 2018 , 25, 1313-1322	1.8	31
415	Buckling and vibration analysis of nonlocal axially functionally graded nanobeams based on Hencky-bar chain model. <i>Applied Mathematical Modelling</i> , 2018 , 63, 445-463	4.5	27
414	Uncovering the finite difference model equivalent to Hencky bar-net model for axisymmetric bending of circular and annular plates. <i>Applied Mathematical Modelling</i> , 2018 , 61, 300-315	4.5	11
413	Hencky bar-net model for buckling and vibration analyses of rectangular plates with non-uniform thickness. <i>Engineering Structures</i> , 2018 , 168, 653-668	4.7	6
412	Static and Dynamic Behaviors of Microstructured Membranes within Nonlocal Mechanics. <i>Journal of Engineering Mechanics - ASCE</i> , 2018 , 144, 04017155	2.4	5
411	Interfacial Thermal Conductance and Thermal Rectification of Hexagonal BCnN/Graphene In-Plane Heterojunctions. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 22783-22789	3.8	24
410	Experimental study on fatigue performance of adhesively bonded anchorage system for CFRP tendons. <i>Composites Part B: Engineering</i> , 2018 , 150, 47-59	10	17
409	Extension of Hencky bar-net model for vibration analysis of rectangular plates with rectangular cutouts. <i>Journal of Sound and Vibration</i> , 2018 , 432, 65-87	3.9	17
408	Vibration of Heavy String Tethered to MassBpring System. <i>International Journal of Structural Stability and Dynamics</i> , 2017 , 17, 1771002	1.9	1
407	Semi-analytical solutions for optimal design of columns based on Hencky bar-chain model. <i>Engineering Structures</i> , 2017 , 136, 87-99	4.7	14
406	Small length scale coefficient for Eringen and lattice-based continualized nonlocal circular arches in buckling and vibration. <i>Composite Structures</i> , 2017 , 165, 148-159	5.3	26
405	An approximate model for optimizing Bernoulli columns against buckling. <i>Engineering Structures</i> , 2017 , 141, 316-327	4.7	11
404	Comparison of nonlocal continualization schemes for lattice beams and plates. <i>Archive of Applied Mechanics</i> , 2017 , 87, 1105-1138	2.2	21
403	Experimental Study of Hydrodynamic Responses of a Single Floating Storage Tank With Internal Fluid 2017 ,		1
402	Eringen small length scale coefficient for vibration of axially loaded nonlocal Euler beams with elastic end restraints 2017 , 1,		1
401	Hencky bar-net model for plate buckling. <i>Engineering Structures</i> , 2017 , 150, 947-954	4.7	17

(2015-2017)

400	Critical examination of midplane and neutral plane formulations for vibration analysis of FGM beams. <i>Engineering Structures</i> , 2017 , 130, 275-281	4.7	36
399	On boundary conditions for buckling and vibration of nonlocal beams. <i>European Journal of Mechanics, A/Solids</i> , 2017 , 61, 73-81	3.7	35
398	Initial Design of a Double Curved Floating Bridge and Global Hydrodynamic Responses Under Environmental Conditions 2017 ,		2
397	Buckling and vibration of Hencky bar-chain with internal elastic springs. <i>International Journal of Mechanical Sciences</i> , 2016 , 119, 383-395	5.5	28
396	Thermal Conductivity of Graphene and Its Polymer Nanocomposites: A Review 2016 , 1-28		3
395	Bending, Buckling, and Vibration of Equilateral Simply Supported or Clamped Triangular Plates with Rounded Corners. <i>Journal of Engineering Mechanics - ASCE</i> , 2016 , 142, 04016074	2.4	2
394	Nonlocal or gradient elasticity macroscopic models: A question of concentrated or distributed microstructure. <i>Mechanics Research Communications</i> , 2016 , 71, 25-31	2.2	28
393	Buckling of Nonlocal Columns with Allowance for Selfweight. <i>Journal of Engineering Mechanics - ASCE</i> , 2016 , 142, 04016037	2.4	29
392	From Ziegler to Beck column: a nonlocal approach. <i>Archive of Applied Mechanics</i> , 2016 , 86, 1095-1118	2.2	5
391	Hencky bar-chain model for buckling analysis of non-uniform columns. <i>Structures</i> , 2016 , 6, 73-84	3.4	27
390	Buckling and vibrations of microstructured rectangular plates considering phenomenological and lattice-based nonlocal continuum models. <i>Composite Structures</i> , 2016 , 149, 145-156	5.3	36
389	Hencky bar-chain model for buckling and vibration analyses of non-uniform beams on variable elastic foundation. <i>Engineering Structures</i> , 2016 , 126, 252-263	4.7	31
388	Eringen Stress Gradient Model for Bending of Nonlocal Beams. <i>Journal of Engineering Mechanics - ASCE</i> , 2016 , 142, 04016095	2.4	40
387	Mechanical properties and microstructure of a graphene oxidellement composite. <i>Cement and Concrete Composites</i> , 2015 , 58, 140-147	8.6	416
386	Mechanical behavior of geopolymer concrete subjected to high strain rate compressive loadings. Materials and Structures/Materiaux Et Constructions, 2015, 48, 671-681	3.4	26
385	Discrete and non-local elastica. <i>International Journal of Non-Linear Mechanics</i> , 2015 , 77, 128-140	2.8	37
384	Eringen Length-Scale Coefficients for Vibration and Buckling of Nonlocal Rectangular Plates with Simply Supported Edges. <i>Journal of Engineering Mechanics - ASCE</i> , 2015 , 141, 04014117	2.4	29
383	Hencky Bar-Chain Model for Buckling and Vibration of Beams with Elastic End Restraints. International Journal of Structural Stability and Dynamics, 2015, 15, 1540007	1.9	59

382	Nonlocal Equivalent Continua for Buckling and Vibration Analyses of Microstructured Beams. Journal of Nanomechanics & Micromechanics, 2015 , 5,		43
381	Nonlinear-elastic membrane-shell model for single-walled carbon nanotubes under uni-axial deformation. <i>Computational Materials Science</i> , 2015 , 97, 237-244	3.2	2
380	On lateral-torsional buckling of discrete elastic systems: A nonlocal approach. <i>European Journal of Mechanics, A/Solids</i> , 2015 , 49, 106-113	3.7	7
379	Reinforcing Effects of Graphene Oxide on Portland Cement Paste. <i>Journal of Materials in Civil Engineering</i> , 2015 , 27,	3	214
378	Discussion: Effect of strain rate on splitting tensile strength of geopolymer concrete. <i>Magazine of Concrete Research</i> , 2015 , 67, 906-907	2	0
377	Revisiting finite difference and finite element methods applied to structural mechanics within enriched continua. <i>European Journal of Mechanics, A/Solids</i> , 2015 , 53, 107-120	3.7	26
376	Effect of Covalent Functionalization on Thermal Transport across Graphene B olymer Interfaces. Journal of Physical Chemistry C, 2015 , 119, 12731-12738	3.8	92
375	Closed-form solutions for funicular cables and arches. <i>Acta Mechanica</i> , 2015 , 226, 1641-1645	2.1	15
374	On Nonlocal Computation of Eigenfrequencies of Beams Using Finite Difference and Finite Element Methods. <i>International Journal of Structural Stability and Dynamics</i> , 2015 , 15, 1540008	1.9	14
373	Treatment of elastically restrained ends for beam buckling in finite difference, microstructured and nonlocal beam models. <i>Acta Mechanica</i> , 2015 , 226, 419-436	2.1	14
372	Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. <i>Carbon</i> , 2015 , 85, 212-220	10.4	170
371	Analytical Solutions for Catenary Domes. <i>Journal of Engineering Mechanics - ASCE</i> , 2015 , 141, 06014019	2.4	1
370	Higher-order gradient elasticity models applied to geometrically nonlinear discrete systems. <i>Theoretical and Applied Mechanics</i> , 2015 , 42, 223-248	0.4	16
369	Great Ideas Float to the Top. Ocean Engineering & Oceanography, 2015, 1-36	0.3	1
368	CALIBRATION OF SMALL LENGTH COEFFICIENT OF NONLOCAL BEAM THEORY VIA MICROSTRUCTURED BEAM MODEL FOR BUCKLING AND VIBRATION 2015 , 109-110		
367	Analytical length scale calibration of nonlocal continuum from a microstructured buckling model. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2014 , 94, 402-413	1	59
366	On buckling of granular columns with shear interaction: Discrete versus nonlocal approaches. Journal of Applied Physics, 2014 , 115, 234902	2.5	10
365	Eringen length scale coefficient for buckling of nonlocal rectangular plates from microstructured beam-grid model. <i>International Journal of Solids and Structures</i> , 2014 , 51, 4307-4315	3.1	47

(2013-2014)

364	Nano reinforced cement and concrete composites and new perspective from graphene oxide. <i>Construction and Building Materials</i> , 2014 , 73, 113-124	6.7	376	
363	On nonconservativeness of Eringen nonlocal elasticity in beam mechanics: correction from a discrete-based approach. <i>Archive of Applied Mechanics</i> , 2014 , 84, 1275-1292	2.2	128	
362	Effect of strain rate on splitting tensile strength of geopolymer concrete. <i>Magazine of Concrete Research</i> , 2014 , 66, 825-835	2	21	
361	Obtaining Eringen?s length scale coefficient for vibrating nonlocal beams via continualization method. <i>Journal of Sound and Vibration</i> , 2014 , 333, 4977-4990	3.9	32	
360	CONTINUUM SHELL MODEL FOR BUCKLING OF ARMCHAIR CARBON NANOTUBES UNDER COMPRESSION OR TORSION. <i>International Journal of Applied Mechanics</i> , 2014 , 06, 1450006	2.4	18	
359	Molecular Dynamics Simulation and Continuum Shell Model for Buckling Analysis of Carbon Nanotubes. <i>Springer Series in Materials Science</i> , 2014 , 239-273	0.9	9	
358	Continuum Shell Model for Buckling of Single-Walled Carbon Nanotubes with Different Chiral Angles. <i>International Journal of Structural Stability and Dynamics</i> , 2014 , 14, 1450006	1.9	3	
357	Temperature-induced unfolding of scrolled graphene and folded graphene. <i>Journal of Applied Physics</i> , 2014 , 115, 204307	2.5	19	
356	Discrete systems behave as nonlocal structural elements: Bending, buckling and vibration analysis. <i>European Journal of Mechanics, A/Solids</i> , 2014 , 44, 125-135	3.7	83	
355	Reducing hydroelastic response of pontoon-type very large floating structures using flexible connector and gill cells. <i>Engineering Structures</i> , 2013 , 52, 372-383	4.7	28	
354	Floating wetlands at Punggol. IES Journal Part A: Civil and Structural Engineering, 2013, 6, 249-257		3	
353	Exact Vibration Solutions for a Class of Nonuniform Beams. <i>Journal of Engineering Mechanics - ASCE</i> , 2013 , 139, 928-931	2.4	8	
352	Stochastic hydroelastic analysis of pontoon-type very large floating structures considering directional wave spectrum. <i>Probabilistic Engineering Mechanics</i> , 2013 , 33, 26-37	2.6	10	
351	A molecular dynamics investigation on mechanical properties of hydrogenated graphynes. <i>Journal of Applied Physics</i> , 2013 , 114, 073504	2.5	18	
350	Eringen's small length scale coefficient for buckling of nonlocal Timoshenko beam based on microstructured beam model. <i>Journal of Applied Physics</i> , 2013 , 114, 114902	2.5	39	
349	Appropriate Boundary Conditions for Nonlocal Elastic Beams. <i>Advanced Materials Research</i> , 2013 , 645, 396-404	0.5	1	
348	Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams. <i>Journal of Applied Physics</i> , 2013 , 114, 104312	2.5	38	
347	Calibration of Eringen's small length scale coefficient for initially stressed vibrating nonlocal Euler beams based on microstructured beam model. <i>Journal Physics D: Applied Physics</i> , 2013 , 46, 345501	3	60	

346	Stability Analysis of Nonlocal Elastic Columns with Initial Imperfection. <i>Mathematical Problems in Engineering</i> , 2013 , 2013, 1-12	1.1	6
345	A grillage model for predicting wrinkles in annular graphene under circular shearing. <i>Journal of Applied Physics</i> , 2013 , 113, 014902	2.5	9
344	Analogy of TE waveguide and vibrating plate with sliding edge condition and exact solutions. <i>IES Journal Part A: Civil and Structural Engineering</i> , 2013 , 6, 32-41		
343	Exact closed form solutions for free vibration of non-uniform annular plates. <i>IES Journal Part A: Civil and Structural Engineering</i> , 2012 , 5, 50-55		1
342	Buckling analysis of shear deformable nanorods within the framework of nonlocal elasticity theory. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2012 , 44, 1380-1385	3	9
341	Mechanical properties of graphynes under tension: A molecular dynamics study. <i>Applied Physics Letters</i> , 2012 , 101, 081909	3.4	184
340	A molecular dynamics investigation on thermal conductivity of graphynes. <i>Computational Materials Science</i> , 2012 , 65, 406-410	3.2	80
339	Thermal conductivity of defective graphene. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2012 , 376, 3668-3672	2.3	78
338	Tunable wrinkling pattern in annular graphene under circular shearing at inner edge. <i>Nanoscale</i> , 2012 , 4, 5077-81	7.7	32
337	Transverse Vibrations of Clamped and Simply-Supported Circular Plates with Two Dimensional Thickness Variation. <i>Shock and Vibration</i> , 2012 , 19, 273-285	1.1	5
336	BI-STABLE ANALYSES OF LAMINATED FGM SHELLS. <i>International Journal of Structural Stability and Dynamics</i> , 2012 , 12, 311-335	1.9	8
335	BUCKLING BEHAVIOR OF SHORT MULTI-WALLED CARBON NANOTUBES UNDER AXIAL COMPRESSION LOADS. <i>International Journal of Structural Stability and Dynamics</i> , 2012 , 12, 1250045	1.9	6
334	BUCKLING OF NANO-RINGS/ARCHES BASED ON NONLOCAL ELASTICITY. <i>International Journal of Applied Mechanics</i> , 2012 , 04, 1250025	2.4	14
333	Exact Vibration Solution for Exponentially Tapered Cantilever With Tip Mass. <i>Journal of Vibration and Acoustics, Transactions of the ASME</i> , 2012 , 134,	1.6	19
332	Reducing hydroelastic response of very large floating structures by altering their plan shapes. <i>Ocean Systems Engineering</i> , 2012 , 2, 69-81		16
331	2012,		35
330	Bending behavior of double-walled carbon nanotubes with sp3 interwall bonds. <i>Journal of Applied Physics</i> , 2011 , 109, 083516	2.5	9
329	Very Large Floating Structures: Applications, Research and Development. <i>Procedia Engineering</i> , 2011 , 14, 62-72		105

328	A Molecular Dynamics Investigaation of the Torsional Responses of Defective Single-Walled Carbon Nanotubes. <i>Procedia Engineering</i> , 2011 , 14, 1307-1311		O	
327	Carbon nanotubellement composites: A retrospect. <i>IES Journal Part A: Civil and Structural Engineering</i> , 2011 , 4, 254-265		72	
326	Hydroelastic response of very large floating structure with a flexible line connection. <i>Ocean Engineering</i> , 2011 , 38, 1957-1966	3.9	72	
325	EXACT SOLUTIONS FOR VIBRATING RECTANGULAR MEMBRANES PLACED IN A VERTICAL PLANE. International Journal of Applied Mechanics, 2011 , 03, 625-631	2.4	6	
324	Mechanical properties of bilayer graphene sheets coupled by sp3 bonding. <i>Carbon</i> , 2011 , 49, 4511-4517	7 10.4	191	
323	Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio. <i>Composite Structures</i> , 2011 , 93, 1683-1691	5.3	63	
322	Research and developments on ocean thermal energy conversion. <i>IES Journal Part A: Civil and Structural Engineering</i> , 2011 , 4, 41-52		10	
321	Exact solutions for vibrating nonhomogeneous rectangular membranes with exponential density distribution. <i>IES Journal Part A: Civil and Structural Engineering</i> , 2011 , 4, 37-40		1	
320	EXAMINATION OF CYLINDRICAL SHELL THEORIES FOR BUCKLING OF CARBON NANOTUBES. International Journal of Structural Stability and Dynamics, 2011 , 11, 1035-1058	1.9	30	
319	Hydroelastic Analysis and Response of Pontoon-Type Very Large Floating Structures. <i>Lecture Notes in Computational Science and Engineering</i> , 2011 , 103-130	0.3	7	
318	Dynamic Instability of Nanorods/Nanotubes Subjected to an End Follower Force. <i>Journal of Engineering Mechanics - ASCE</i> , 2010 , 136, 1054-1058	2.4	18	
317	Exact solutions for vibration of a vertical heavy string with a tip mass. <i>IES Journal Part A: Civil and Structural Engineering</i> , 2010 , 3, 278-281		3	
316	FREE VIBRATION AND BUCKLING ANALYSIS OF HIGHLY SKEWED PLATES BY LEAST SQUARES-BASED FINITE DIFFERENCE METHOD. <i>International Journal of Structural Stability and Dynamics</i> , 2010 , 10, 225-252	1.9	21	
315	Optimal Layout of Gill Cells for Very Large Floating Structures. <i>Journal of Structural Engineering</i> , 2010 , 136, 907-916	3	9	
314	Triangular higher-order element for better prediction of stress resultants and stresses in plated and shell structures. <i>IES Journal Part A: Civil and Structural Engineering</i> , 2010 , 3, 131-146		1	
313	Literature Review of Methods for Mitigating Hydroelastic Response of VLFS Under Wave Action. <i>Applied Mechanics Reviews</i> , 2010 , 63,	8.6	56	
312	A Nonlinear Van Der Waals Force Model for Multiwalled Carbon Nanotubes Modeled by a Nested System of Cylindrical Shells. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2010 , 77,	2.7	13	
311	Recent Studies on Buckling of Carbon Nanotubes. <i>Applied Mechanics Reviews</i> , 2010 , 63,	8.6	103	

310	Bending, Buckling, and Vibration of Micro/Nanobeams by Hybrid Nonlocal Beam Model. <i>Journal of Engineering Mechanics - ASCE</i> , 2010 , 136, 562-574	2.4	127
309	Research on floating wind turbines: a literature survey. <i>IES Journal Part A: Civil and Structural Engineering</i> , 2010 , 3, 267-277		29
308	Collision of a suddenly released bent carbon nanotube with a circular graphene sheet. <i>Journal of Applied Physics</i> , 2010 , 107, 074303	2.5	10
307	Exact lateralforsional buckling solutions for cantilevered beams subjected to intermediate and end transverse point loads. <i>Thin-Walled Structures</i> , 2010 , 48, 71-76	4.7	12
306	Hydrodynamic forces on a rolling barge with bilge keels. <i>Applied Ocean Research</i> , 2010 , 32, 219-232	3.4	17
305	Connection design for two-floating beam system for minimum hydroelastic response. <i>Marine Structures</i> , 2010 , 23, 67-87	3.8	45
304	A molecular dynamics investigation of the torsional responses of defective single-walled carbon nanotubes. <i>Carbon</i> , 2010 , 48, 4100-4108	10.4	47
303	On Lateral-Torsional Buckling of Non-Local Beams. <i>Advances in Applied Mathematics and Mechanics</i> , 2010 , 2, 389-398	2.1	13
302	Buckling of defective carbon nanotubes. <i>Journal of Applied Physics</i> , 2009 , 106, 113503	2.5	44
301	Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. <i>Nanotechnology</i> , 2009 , 20, 395707	3.4	99
300	POSTBUCKLING OF NANO RODS/TUBES BASED ON NONLOCAL BEAM THEORY. <i>International Journal of Applied Mechanics</i> , 2009 , 01, 259-266	2.4	43
299	Buckling of carbon nanotubes at high temperatures. <i>Nanotechnology</i> , 2009 , 20, 215702	3.4	43
298	Plastic-Buckling of Rectangular Plates under Combined Uniaxial and Shear Stresses. <i>Journal of Engineering Mechanics - ASCE</i> , 2009 , 135, 892-895	2.4	3
297	Dynamic behavior of triple-walled carbon nanotubes conveying fluid. <i>Journal of Sound and Vibration</i> , 2009 , 319, 1003-1018	3.9	70
296	Hydroelastic responses and interactions of floating fuel storage modules placed side-by-side with floating breakwaters. <i>Marine Structures</i> , 2009 , 22, 633-658	3.8	32
295	A higher-order plate element for accurate prediction of interlaminar stresses in laminated composite plates. <i>Composite Structures</i> , 2009 , 91, 337-357	5.3	42
294	Nonlinear bending and stretching of a circular graphene sheet under a central point load. <i>Nanotechnology</i> , 2009 , 20, 075702	3.4	82
293	Experimental study on anti-heaving devices for very large floating structure. <i>IES Journal Part A: Civil and Structural Engineering</i> , 2009 , 2, 255-271		2

(2008-2009)

292	Reducing Hydroelastic Response of Interconnected Floating Beams Using Semi-Rigid Connections 2009 ,		7
291	Mechanical properties and buckling behaviors of condensed double-walled carbon nanotubes. Journal of Nanoscience and Nanotechnology, 2009 , 9, 4870-9	1.3	8
2 90	Buckling Analysis of Moderately Thick Rotational Shells under Uniform Pressure Using the Ritz Method. <i>Journal of Structural Engineering</i> , 2008 , 134, 593-601	3	3
289	Exact Solution for Buckling of Columns Including Self-Weight. <i>Journal of Engineering Mechanics - ASCE</i> , 2008 , 134, 116-119	2.4	53
288	Beam Bending Solutions Based on Nonlocal Timoshenko Beam Theory. <i>Journal of Engineering Mechanics - ASCE</i> , 2008 , 134, 475-481	2.4	137
287	Free vibration of nanorings/arches based on nonlocal elasticity. <i>Journal of Applied Physics</i> , 2008 , 104, 014303	2.5	72
286	The small length scale effect for a non-local cantilever beam: a paradox solved. <i>Nanotechnology</i> , 2008 , 19, 345703	3.4	366
285	Hydroelastic Analysis of Floating Performance Stage at Marina Bay, Singapore 2008,		3
284	Buckling of super ellipsoidal shells under uniform pressure. <i>IES Journal Part A: Civil and Structural Engineering</i> , 2008 , 1, 218-225		О
283	DYNAMICAL PROPERTIES OF MULTI-WALLED CARBON NANOTUBES BASED ON A NONLOCAL ELASTICITY MODEL. <i>International Journal of Modern Physics B</i> , 2008 , 22, 4975-4986	1.1	8
282	Heaving response of a large floating platform. <i>IES Journal Part A: Civil and Structural Engineering</i> , 2008 , 1, 97-105		1
281	Torsional responses of double-walled carbon nanotubes via molecular dynamics simulations. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 455214	1.8	23
2 80	Examining the effects of wall numbers on buckling behavior and mechanical properties of multiwalled carbon nanotubes via molecular dynamics simulations. <i>Journal of Applied Physics</i> , 2008 , 103, 053505	2.5	21
279	Hydroelastic analysis of pontoon-type circular VLFS with an attached submerged plate. <i>Applied Ocean Research</i> , 2008 , 30, 287-296	3.4	19
278	Pressure dependence of the instability of multiwalled carbon nanotubes conveying fluids. <i>Archive of Applied Mechanics</i> , 2008 , 78, 637-648	2.2	22
277	Mesh-free least-squares-based finite difference method for large-amplitude free vibration analysis of arbitrarily shaped thin plates. <i>Journal of Sound and Vibration</i> , 2008 , 317, 955-974	3.9	16
276	Modification of fundamental vibration modes of circular plates with free edges. <i>Journal of Sound and Vibration</i> , 2008 , 317, 709-715	3.9	12
275	Computation of the stress resultants of a floating Mindlin plate in response to linear wave forces. Journal of Fluids and Structures, 2008, 24, 1042-1057	3.1	11

274	Computation of stress resultants in plate bending problems using higher-order triangular elements. <i>Engineering Structures</i> , 2008 , 30, 2687-2706	4.7	16
273	Buckling of super ellipsoidal shells under uniform pressure. <i>Thin-Walled Structures</i> , 2008 , 46, 584-591	4.7	14
272	Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. <i>Nanotechnology</i> , 2007 , 18, 385704	3.4	151
271	The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. <i>Nanotechnology</i> , 2007 , 18, 075702	3.4	285
270	Non-local elastic plate theories. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2007 , 463, 3225-3240	2.4	201
269	Free vibration analysis of plates using least-square-based finite difference method. <i>Computer Methods in Applied Mechanics and Engineering</i> , 2007 , 196, 1330-1343	5.7	24
268	Effect of strain rate on the buckling behavior of single- and double-walled carbon nanotubes. <i>Carbon</i> , 2007 , 45, 514-523	10.4	44
267	Effectiveness and optimal design of gill cells in minimizing differential deflection in circular VLFS. <i>Engineering Structures</i> , 2007 , 29, 1845-1853	4.7	6
266	Hydroelastic response of a box-like floating fuel storage module modeled using non-conforming quadratic-serendipity Mindlin plate element. <i>Engineering Structures</i> , 2007 , 29, 3503-3514	4.7	19
265	Plastic buckling analysis of thick plates using p-Ritz method. <i>International Journal of Solids and Structures</i> , 2007 , 44, 6239-6255	3.1	31
264	Vibration analysis of arbitrarily shaped membranes using local radial basis function-based differential quadrature method. <i>Journal of Sound and Vibration</i> , 2007 , 306, 252-270	3.9	41
263	Vibration of Annular Mindlin Plates with Small Cores. <i>Journal of Engineering Mechanics - ASCE</i> , 2007 , 133, 597-600	2.4	
262	Relationships between vibration frequencies of higher-order plate theories and classical thin plate theory 2007 , 275-292		
261	Buckling of carbon nanotubes: a literature survey. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 4221-47	1.3	48
260	Rigid Element Approach for Deriving the Geometric Stiffness of Curved Beams for Use in Buckling Analysis. <i>Journal of Structural Engineering</i> , 2007 , 133, 1762-1771	3	6
259	BUCKLING AND POSTBUCKLING ANALYSIS OF MULTI-WALLED CARBON NANOTUBES BASED ON THE CONTINUUM SHELL MODEL. <i>International Journal of Structural Stability and Dynamics</i> , 2007 , 07, 629-645	1.9	6
258	Least squares finite difference method for vibration analysis of plates 2007 , 118-144		
257	Optimal Layout of Gill Cells for Very Large Floating Structures 2007 , 115		

(2006-2007)

256	Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams. <i>Journal of Applied Physics</i> , 2007 , 101, 054312	2.5	117
255	Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. <i>Journal of Applied Physics</i> , 2007 , 101, 024305	2.5	287
254	Vibration of nonlocal Timoshenko beams. <i>Nanotechnology</i> , 2007 , 18, 105401	3.4	303
253	VIBRATION OF INITIALLY STRESSED MICRO- AND NANO-BEAMS. <i>International Journal of Structural Stability and Dynamics</i> , 2007 , 07, 555-570	1.9	57
252	Analysis and design of plated structures 2007 ,		2
251	LSFD method for accurate vibration modes and modal stress-resultants of freely vibrating plates that model VLFS. <i>Computers and Structures</i> , 2006 , 84, 2329-2339	4.5	6
250	Plastic buckling of plates 2006 , 117-146		1
249	Postbuckling of Beam Subjected to Intermediate Follower Force. <i>Journal of Engineering Mechanics - ASCE</i> , 2006 , 132, 16-25	2.4	3
248	Membrane Analysis and Minimum Weight Design of Submerged Spherical Domes. <i>Journal of Structural Engineering</i> , 2006 , 132, 253-259	3	9
247	Effect of chirality on buckling behavior of single-walled carbon nanotubes. <i>Journal of Applied Physics</i> , 2006 , 100, 074304	2.5	65
246	AN APPLICATION OF DIFFERENTIAL TRANSFORMATION TO STABILITY ANALYSIS OF HEAVY COLUMNS. International Journal of Structural Stability and Dynamics, 2006 , 06, 317-332	1.9	26
245	Buckling of double-walled carbon nanotubes modeled by solid shell elements. <i>Journal of Applied Physics</i> , 2006 , 99, 114317	2.5	31
244	Buckling of Multiwalled Carbon Nanotubes Using Timoshenko Beam Theory. <i>Journal of Engineering Mechanics - ASCE</i> , 2006 , 132, 952-958	2.4	37
243	Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. <i>Journal Physics D: Applied Physics</i> , 2006 , 39, 3904-3909	3	317
242	Effect of omitting terms involving tube radii difference in shell models on buckling solutions of DWNTs. <i>Computational Materials Science</i> , 2006 , 37, 578-581	3.2	3
241	Benchmark hydroelastic responses of a circular VLFS under wave action. <i>Engineering Structures</i> , 2006 , 28, 423-430	4.7	32
240	Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. <i>Journal of Sound and Vibration</i> , 2006 , 294, 1060-1072	3.9	190
239	Computation of modal stress resultants for completely free vibrating plates by LSFD method. Journal of Sound and Vibration, 2006 , 297, 704-726	3.9	5

238	Minimizing differential deflection in a pontoon-type, very large floating structure via gill cells. <i>Marine Structures</i> , 2006 , 19, 70-82	3.8	9
237	Deposition and characterization of TaNtu nanocomposite thin films. <i>Surface and Coatings Technology</i> , 2006 , 200, 3179-3183	4.4	26
236	Membrane analysis and optimization of submerged domes with allowance for selfweight and skin cover load. <i>Archive of Applied Mechanics</i> , 2006 , 75, 235-247	2.2	4
235	Bending Solutions of Sectorial Thick Plates Based on Reissner Plate Theory. <i>Mechanics Based Design of Structures and Machines</i> , 2005 , 33, 51-77	1.7	3
234	Examination of the fundamental frequencies of annular plates with small core. <i>Journal of Sound and Vibration</i> , 2005 , 280, 1116-1124	3.9	16
233	Buckling of circular plates under intermediate and edge radial loads. <i>Thin-Walled Structures</i> , 2005 , 43, 1926-1933	4.7	2
232	Effects of annealing on the microstructure and electrical properties of TaN-Cu nanocomposite thin films. <i>Surface and Coatings Technology</i> , 2005 , 193, 173-177	4.4	13
231	Boundary-free multi-element barrier films by reactive co-sputtering. <i>Surface and Coatings Technology</i> , 2005 , 198, 335-339	4.4	5
230	Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells. <i>International Journal of Solids and Structures</i> , 2005 , 42, 6032-6047	3.1	70
229	Exact vibration results for stepped circular plates with free edges. <i>International Journal of Mechanical Sciences</i> , 2005 , 47, 1224-1248	5.5	13
228	Buckling of intermediate ring supported cylindrical shells under axial compression. <i>Thin-Walled Structures</i> , 2005 , 43, 427-443	4.7	3
227	Near-Amorphous Alloy Thin Films by Co-Sputtering Deposition. <i>Journal of Metastable and Nanocrystalline Materials</i> , 2005 , 23, 211-214	0.2	1
226	Approximate Solution for the Shape of Submerged Funicular Arches with Self-weight. <i>Journal of Structural Engineering</i> , 2005 , 131, 399-404	3	8
225	PLASTIC BUCKLING OF MODERATELY THICK ANNULAR PLATES. <i>International Journal of Structural Stability and Dynamics</i> , 2005 , 05, 337-357	1.9	6
224	Buckling of Circular Mindlin Plates with an Internal Ring Support and Elastically Restrained Edge. Journal of Engineering Mechanics - ASCE, 2005, 131, 359-366	2.4	14
223	Closure to B uckling of Columns with Intermediate Elastic Restraint (by C. M. Wang and I. M. Nazmul. <i>Journal of Engineering Mechanics - ASCE</i> , 2004 , 130, 246-246	2.4	2
222	Closure to Btability Criteria for Euler Columns with Intermediate and End Axial Loads[by C. M. Wang, C. Y. Wang and I. M. Nazmul. <i>Journal of Engineering Mechanics - ASCE</i> , 2004 , 130, 1256-1256	2.4	
221	Stability criteria for rectangular plates subjected to intermediate and end inplane loads. <i>Thin-Walled Structures</i> , 2004 , 42, 119-136	4.7	8

220	Hydroelastic analysis of pontoon-type VLFS: a literature survey. Engineering Structures, 2004, 26, 245-2	56 .7	216
219	Electrical and piezoresistive properties of TaNtu nanocomposite thin films. <i>Thin Solid Films</i> , 2004 , 469-470, 455-459	2.2	15
218	Mode shapes and stress-resultants of circular Mindlin plates with free edges. <i>Journal of Sound and Vibration</i> , 2004 , 276, 511-525	3.9	15
217	Plastic buckling of rectangular plates subjected to intermediate and end inplane loads. <i>International Journal of Solids and Structures</i> , 2004 , 41, 4279-4297	3.1	9
216	Electrical properties of TaNtu nanocomposite thin films. Ceramics International, 2004, 30, 1879-1883	5.1	23
215	Plastic Buckling of Simply Supported, Polygonal Mindlin Plates. <i>Journal of Engineering Mechanics - ASCE</i> , 2004 , 130, 117-122	2.4	6
214	Buckling of a Weakened Column. <i>Journal of Engineering Mechanics - ASCE</i> , 2004 , 130, 1373-1376	2.4	32
213	Exact Bending Solutions of Axisymmetric Reissner Plates in Terms of Classical Thin Plate Solutions. <i>Advances in Structural Engineering</i> , 2004 , 7, 129-145	1.9	2
212	Buckling of Vertical Cylindrical Shells Under Combined End Pressure and Body Force. <i>Journal of Engineering Mechanics - ASCE</i> , 2003 , 129, 876-884	2.4	25
211	Fundamental frequencies of circular plates with internal elastic ring support. <i>Journal of Sound and Vibration</i> , 2003 , 263, 1071-1078	3.9	13
210	Optimization of Submerged Funicular Arches. <i>Mechanics Based Design of Structures and Machines</i> , 2003 , 31, 181-200	1.7	8
209	Vibration of Timoshenko Beams with Internal Hinge. <i>Journal of Engineering Mechanics - ASCE</i> , 2003 , 129, 293-301	2.4	18
208	Shape Control of Statically Indeterminate Laminated Beams with Piezoelectric Actuators. <i>Mechanics of Advanced Materials and Structures</i> , 2003 , 10, 145-160	1.8	10
207	Ritz Buckling Analysis of Rectangular Plates with Internal Hinge. <i>Journal of Engineering Mechanics - ASCE</i> , 2003 , 129, 683-688	2.4	8
206	Stability Criteria for Euler Columns with Intermediate and End Axial Loads. <i>Journal of Engineering Mechanics - ASCE</i> , 2003 , 129, 468-472	2.4	5
205	Buckling of Columns with Intermediate Elastic Restraint. <i>Journal of Engineering Mechanics - ASCE</i> , 2003 , 129, 241-244	2.4	12
204	Exact Buckling Solutions For Rectangular Plates Under Intermediate and End Uniaxial Loads. Journal of Engineering Mechanics - ASCE, 2003, 129, 835-838	2.4	11
203	EXACT BUCKLING AND VIBRATION SOLUTIONS FOR STEPPED RECTANGULAR PLATES. <i>Journal of Sound and Vibration</i> , 2002 , 250, 503-517	3.9	44

202	Optimal location of a cutout in rectangular Mindlin plates for maximum fundamental frequency of vibration. <i>Structural and Multidisciplinary Optimization</i> , 2002 , 24, 400-404	3.6	5
201	Problems and remedy for the Ritz method in determining stress resultants of corner supported rectangular plates. <i>Computers and Structures</i> , 2002 , 80, 145-154	4.5	18
200	Stability criteria for Timoshenko columns with intermediate and end concentrated axial loads. Journal of Constructional Steel Research, 2002, 58, 1177-1193	3.8	18
199	Optimal design of stepped circular plates with allowance for the effect of transverse shear deformation. <i>International Journal of Mechanical Sciences</i> , 2002 , 44, 1163-1177	5.5	3
198	Thick Luy plates re-visited. <i>International Journal of Solids and Structures</i> , 2002 , 39, 127-144	3.1	28
197	BENDING OF SECTORIAL LEVINSON PLATES: RELATIONSHIPS WITH CLASSICAL SOLUTIONS*. <i>Mechanics Based Design of Structures and Machines</i> , 2002 , 30, 579-612		2
196	BUCKLING OF STANDING VERTICAL PLATES UNDER BODY FORCES. <i>International Journal of Structural Stability and Dynamics</i> , 2002 , 02, 151-161	1.9	11
195	Improved Computation of Stress Resultants in the p -Ritz Method. <i>Journal of Structural Engineering</i> , 2002 , 128, 249-257	3	8
194	Funicular Shapes for Submerged Arches. <i>Journal of Structural Engineering</i> , 2002 , 128, 266-270	3	19
193	Linear and nonlinear actuations in shape control of beams 2001 , 4235, 509		3
192			
192	Buckling of circular plates with an internal ring support and elastically restrained edges. <i>Thin-Walled Structures</i> , 2001 , 39, 821-825	4.7	27
191			27
	Thin-Walled Structures, 2001 , 39, 821-825		
191	Thin-Walled Structures, 2001, 39, 821-825 Analysis of rectangular thick rafts on an elastic half-space. Computers and Geotechnics, 2001, 28, 161-18 Relationships between bending solutions of Reissner and Mindlin plate theories. Engineering	44.4	11
191	Thin-Walled Structures, 2001, 39, 821-825 Analysis of rectangular thick rafts on an elastic half-space. Computers and Geotechnics, 2001, 28, 161-18 Relationships between bending solutions of Reissner and Mindlin plate theories. Engineering Structures, 2001, 23, 838-849 Control of wind-excited towers by active tuned liquid column damper. Engineering Structures, 2001,	4 4.4 4 .7	11 70
191 190 189	Thin-Walled Structures, 2001, 39, 821-825 Analysis of rectangular thick rafts on an elastic half-space. Computers and Geotechnics, 2001, 28, 161-18 Relationships between bending solutions of Reissner and Mindlin plate theories. Engineering Structures, 2001, 23, 838-849 Control of wind-excited towers by active tuned liquid column damper. Engineering Structures, 2001, 23, 1054-1067 A CONTROLLABILITY INDEX FOR OPTIMAL DESIGN OF PIEZOELECTRIC ACTUATORS IN VIBRATION	44.4 4.7 4.7	11 70 35
191 190 189 188	Analysis of rectangular thick rafts on an elastic half-space. Computers and Geotechnics, 2001, 28, 161-18 Relationships between bending solutions of Reissner and Mindlin plate theories. Engineering Structures, 2001, 23, 838-849 Control of wind-excited towers by active tuned liquid column damper. Engineering Structures, 2001, 23, 1054-1067 A CONTROLLABILITY INDEX FOR OPTIMAL DESIGN OF PIEZOELECTRIC ACTUATORS IN VIBRATION CONTROL OF BEAM STRUCTURES. Journal of Sound and Vibration, 2001, 242, 507-518 Bending of linearly tapered annular Mindlin plates. International Journal of Mechanical Sciences,	44.4 4.7 4.7 3.9	11 7° 35 48

184	Elastic/plastic buckling of thick plates. International Journal of Solids and Structures, 2001, 38, 8617-864	403.1	53	
183	VIBRATION OF A BEAM WITH AN INTERNAL HINGE. <i>International Journal of Structural Stability and Dynamics</i> , 2001 , 01, 163-167	1.9	20	
182	Vibration Analysis of Arbitrarily Shaped Sandwich Plates via Ritz Method. <i>Mechanics of Advanced Materials and Structures</i> , 2001 , 8, 101-118		8	
181	BUCKLING OF RECTANGULAR PLATES WITH INTERNAL HINGE. International Journal of Structural Stability and Dynamics, 2001 , 01, 169-179	1.9	14	
180	Bending Solutions of Axisymmetric Levinson Plates in Terms of Corresponding Kirchhoff Solutions. Journal of Engineering Mechanics - ASCE, 2001 , 127, 1296-1308	2.4	3	
179	Axisymmetric Buckling of Reddy Circular Plates on Pasternak Foundation. <i>Journal of Engineering Mechanics - ASCE</i> , 2001 , 127, 254-259	2.4	12	
178	Deducing thick plate solutions from classical thin plate solutions. <i>Structural Engineering and Mechanics</i> , 2001 , 11, 89-104		12	
177	On Shear Deformation Plate Solutions: Relationship to The Classical Solutions 2001 , 259-276			
176	FREE VIBRATION OF SKEW SANDWICH PLATES WITH LAMINATED FACINGS. <i>Journal of Sound and Vibration</i> , 2000 , 235, 317-340	3.9	65	
175	Canonical exact solutions for Levy-plates on two-parameter foundation using Green's functions. <i>Engineering Structures</i> , 2000 , 22, 364-378	4.7	96	
174	Bending of annular sectorial Mindlin Plates using Kirchhoff results. <i>European Journal of Mechanics, A/Solids</i> , 2000 , 19, 1041-1057	3.7	12	
173	An overview of the relationships between solutions of the classical and shear deformation plate theories. <i>Composites Science and Technology</i> , 2000 , 60, 2327-2335	8.6	51	
172	Bending Solutions of Sectorial Mindlin Plates from Kirchhoff Plates. <i>Journal of Engineering Mechanics - ASCE</i> , 2000 , 126, 367-372	2.4	9	
171	Relationship Between Vibration Frequencies of Reddy and Kirchhoff Polygonal Plates With Simply Supported Edges. <i>Journal of Vibration and Acoustics, Transactions of the ASME</i> , 2000 , 122, 77-81	1.6	10	
170	Displacement control of Timoshenko beams via induced strain actuators. <i>Smart Materials and Structures</i> , 2000 , 9, 981-984	3.4	9	
169	Optimal placement and size of piezoelectric patches on beams from the controllability perspective. <i>Smart Materials and Structures</i> , 2000 , 9, 558-567	3.4	54	
168	Moment Value at the Center of Circular Plates Under Central Point Load. <i>Journal of Applied Mechanics, Transactions ASME</i> , 1999 , 66, 815-818	2.7	1	
167	Double Curvature Bending of Variable-Arc-Length Elasticas. <i>Journal of Applied Mechanics, Transactions ASME</i> , 1999 , 66, 87-94	2.7	25	

166	Shape Control of Laminated Cantilevered Beams with Piezoelectric Actuators. <i>Journal of Intelligent Material Systems and Structures</i> , 1999 , 10, 164-175	2.3	16
165	Deducing Buckling Loads of Sectorial Mindlin Plates from Kirchhoff Plates. <i>Journal of Engineering Mechanics - ASCE</i> , 1999 , 125, 596-598	2.4	10
164	Frequency relationship between levinson plates and classical thin plates. <i>Mechanics Research Communications</i> , 1999 , 26, 687-692	2.2	8
163	Treatment of mixed and nonuniform boundary conditions in GDQ vibration analysis of rectangular plates. <i>Engineering Structures</i> , 1999 , 21, 125-134	4.7	75
162	Effectiveness of TLCD on various structural systems. <i>Engineering Structures</i> , 1999 , 21, 291-305	4.7	22
161	Axisymmetric bending of functionally graded circular and annular plates. <i>European Journal of Mechanics, A/Solids</i> , 1999 , 18, 185-199	3.7	279
160	Elastic buckling analysis of ring-stiffened cylindrical shells under general pressure loading via the Ritz method. <i>Thin-Walled Structures</i> , 1999 , 35, 1-24	4.7	47
159	Vibration control of various types of buildings using TLCD. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 1999 , 83, 197-208	3.7	55
158	OPTIMAL DESIGN OF INTERNAL RING SUPPORTS FOR VIBRATING CIRCULAR PLATES. <i>Journal of Sound and Vibration</i> , 1999 , 219, 525-537	3.9	8
157	Optimal Damper Characteristics of ATMD for Buildings under Wind Loads. <i>Journal of Structural Engineering</i> , 1999 , 125, 1376-1383	3	31
156	Control on Dynamic Structural Response Using Active-Passive Composite-Tuned Mass Dampers. JVC/Journal of Vibration and Control, 1999 , 5, 475-489	2	9
155	Relationships Between Kirchhoff and Mindlin Bending Solutions for Levy Plates. <i>Journal of Applied Mechanics, Transactions ASME</i> , 1999 , 66, 541-545	2.7	8
154	Shape control of laminated cantilevered beams with piezoelectric actuators 1999,		3
153	COMPOSITE MASS DAMPERS FOR VIBRATION CONTROL OF WIND-EXCITED TOWERS. <i>Journal of Sound and Vibration</i> , 1998 , 213, 301-316	3.9	7
152	Shear deformable bending solutions for nonuniform beams and plates with elastic end restraints from classical solutions. <i>Archive of Applied Mechanics</i> , 1998 , 68, 323-333	2.2	4
151	Instability of variable arc-length elastica under follower force. <i>Mechanics Research Communications</i> , 1998 , 25, 189-194	2.2	12
150	Deflection relationships between classical and third-order plate theories. <i>Acta Mechanica</i> , 1998 , 130, 199-208	2.1	33
149	Vibration control of tapered buildings using TLCD. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 1998 , 77-78, 245-257	3.7	16

148	Exact Solutions for Timoshenko Beams on Elastic Foundations Using Green's Functions*. <i>Mechanics Based Design of Structures and Machines</i> , 1998 , 26, 101-113		31	
147	Ritz Method for Vibration Analysis of Cylindrical Shells with Ring Stiffeners. <i>Journal of Engineering Mechanics - ASCE</i> , 1997 , 123, 134-142	2.4	45	
146	On the Use of Deflection Components in Timoshenko Beam Theory. <i>Journal of Applied Mechanics, Transactions ASME</i> , 1997 , 64, 1006-1008	2.7	2	
145	Viscoelastic Timoshenko Beam Solutions from Euler-Bernoulli Solutions. <i>Journal of Engineering Mechanics - ASCE</i> , 1997 , 123, 746-748	2.4	13	
144	Relationships between Buckling Loads of Kirchhoff, Mindlin, and Reddy Polygonal Plates on Pasternak Foundation. <i>Journal of Engineering Mechanics - ASCE</i> , 1997 , 123, 1134-1137	2.4	16	
143	Relationships Between Classical and Shear Deformation Theories of Axisymmetric Circular Plates. <i>AIAA Journal</i> , 1997 , 35, 1862-1868	2.1	18	
142	Timoshenko curved beam bending solutions in terms of Euler-Bernoulli solutions. <i>Archive of Applied Mechanics</i> , 1997 , 67, 179-190	2.2	38	
141	Analytical bending solutions of elastica with one end held while the other end portion slides on a friction support. <i>Archive of Applied Mechanics</i> , 1997 , 67, 543-554	2.2	9	
140	Green Functions for Axisymmetric Bending and Vibration of Thick Cylindrical Shells. <i>Advances in Structural Engineering</i> , 1997 , 1, 143-157	1.9		
139	Exact solutions for axisymmetric bending of continuous annular plates. <i>Computers and Structures</i> , 1997 , 63, 455-464	4.5	11	
138	Buckling load relationship between Reddy and Kirchhoff plates of polygonal shape with simply supported edges. <i>Mechanics Research Communications</i> , 1997 , 24, 103-108	2.2	20	
137	Mechanics of neutrally bouyant cables. <i>Mechanics Research Communications</i> , 1997 , 24, 603-607	2.2	2	
136	Relationships between Mindlin and Kirchhoff bending solutions for tapered circular and annular plates. <i>Engineering Structures</i> , 1997 , 19, 255-258	4.7	18	
135	UNIFIED FINITE ELEMENTS BASED ON THE CLASSICAL AND SHEAR DEFORMATION THEORIES OF BEAMS AND AXISYMMETRIC CIRCULAR PLATES. <i>Communications in Numerical Methods in Engineering</i> , 1997 , 13, 495-510		23	
134	VIBRATION OF INITIALLY STRESSED REDDY PLATES ON A WINKLER B ASTERNAK FOUNDATION. Journal of Sound and Vibration, 1997 , 204, 203-212	3.9	18	
133	Large deflections of an end supported beam subjected to a point load. <i>International Journal of Non-Linear Mechanics</i> , 1997 , 32, 63-72	2.8	55	
132	Relationships between bending solutions of classical and shear deformation beam theories. <i>International Journal of Solids and Structures</i> , 1997 , 34, 3373-3384	3.1	68	
131	Exact solutions of variable-arc-length elasticas under moment gradient. <i>Structural Engineering and Mechanics</i> , 1997 , 5, 529-539		8	

130	Optimal locations of point supports in laminated rectangular plates for maximum fundamental frequency. <i>Structural Engineering and Mechanics</i> , 1997 , 5, 691-703		7
129	Wagner term in flexural-torsional buckling of thin-walled open-profile columns. <i>Engineering Structures</i> , 1996 , 18, 125-132	4.7	14
128	Optimization of linear segmented circular Mindlin plates for maximum fundamental frequency. <i>Structural Optimization</i> , 1996 , 11, 128-133		3
127	VIBRATION FREQUENCIES OF SIMPLY SUPPORTED POLYGONAL SANDWICH PLATES VIA KIRCHHOFF SOLUTIONS. <i>Journal of Sound and Vibration</i> , 1996 , 190, 255-260	3.9	39
126	OPTIMAL DESIGN OF INTERNAL RING SUPPORT FOR RECTANGULAR PLATES AGAINST VIBRATION OR BUCKLING. <i>Journal of Sound and Vibration</i> , 1996 , 193, 545-554	3.9	4
125	Buckling of annular plates elastically restrained against rotation along edges. <i>Thin-Walled Structures</i> , 1996 , 25, 231-246	4.7	18
124	Deflection and stress-resultants of axisymmetric mindlin plates in terms of corresponding Kirchhoff solutions. <i>International Journal of Mechanical Sciences</i> , 1996 , 38, 1179-1185	5.5	25
123	Optimal locations of point supports in plates for maximum fundamental frequency. <i>Structural Optimization</i> , 1996 , 11, 170-177		8
122	Buckling of Tapered Circular Plates: Allowances for Effects of Shear and Radial Deformation* *Communicated by N. Banichuk. <i>Mechanics Based Design of Structures and Machines</i> , 1996 , 24, 135-153		12
121	Discussion: Postbuckling of Moderately Thick Circular Plates with Edge Elastic Restraint. <i>Journal of Engineering Mechanics - ASCE</i> , 1996 , 122, 181-182	2.4	9
120	Stability of Orthogonally Intersecting Equal-Leg Angle Cross-Bracing Systems* *Communicated by T. Amos. <i>Mechanics Based Design of Structures and Machines</i> , 1996 , 24, 257-279		O
119	Large deflection of simple variable-arc-length beam subjected to a point load. <i>Structural Engineering and Mechanics</i> , 1996 , 4, 49-59		14
118	Optimization of bracing and internal support locations for beams against lateral buckling. <i>Structural Optimization</i> , 1995 , 9, 12-17		4
117	Buckling of skew mindlin plates subjected to in-plane shear loadings. <i>International Journal of Mechanical Sciences</i> , 1995 , 37, 1089-1101	5.5	21
116	Elastic buckling of tapered circular plates. <i>Computers and Structures</i> , 1995 , 55, 1055-1061	4.5	11
115	FORTRAN subroutines for mathematical operations on polynomial functions. <i>Computers and Structures</i> , 1995 , 56, 541-551	4.5	3
114	Effectiveness of tuned liquid column dampers for vibration control of towers. <i>Engineering Structures</i> , 1995 , 17, 668-675	4.7	122
113	Allowance for prebuckling deformations in buckling load relationship between Mindlin and Kirchhoff simply supported plates of general polygonal shape. <i>Engineering Structures</i> , 1995 , 17, 413-418	₃ 4·7	22

112	Reduction of structural vibrations by multiple-mode liquid dampers. <i>Engineering Structures</i> , 1995 , 17, 122-128	4.7	34
111	Simply Supported Polygonal Mindlin Plate Deflections Using Kirchhoff Plates. <i>Journal of Engineering Mechanics - ASCE</i> , 1995 , 121, 1383-1385	2.4	20
110	Shear buckling of simply supported skew Mindlin plates. AIAA Journal, 1995, 33, 377-378	2.1	7
109	Buckling of polygonal and circular sandwich plates. <i>AIAA Journal</i> , 1995 , 33, 962-964	2.1	21
108	Ultimate Strength Analysis of Stub Girders. <i>Journal of Structural Engineering</i> , 1995 , 121, 1259-1264	3	4
107	Timoshenko Beam-Bending Solutions in Terms of Euler-Bernoulli Solutions. <i>Journal of Engineering Mechanics - ASCE</i> , 1995 , 121, 763-765	2.4	107
106	Deflection of sandwich plates in terms of corresponding Kirchhoff plate solutions. <i>Archive of Applied Mechanics</i> , 1995 , 65, 408-414	2.2	11
105	A further note on the effect of shear deformation on the critical buckling of columns. <i>Journal of Sound and Vibration</i> , 1995 , 185, 895-896	3.9	2
104	Vibrations of cylindrical shells with intermediate supports. <i>Journal of Sound and Vibration</i> , 1995 , 187, 69-93	3.9	35
103	Elastic buckling of regular polygonal plates. <i>Thin-Walled Structures</i> , 1995 , 21, 163-173	4.7	19
103	Elastic buckling of regular polygonal plates. <i>Thin-Walled Structures</i> , 1995 , 21, 163-173 Vibration frequencies for elliptical and semi-elliptical Mindlin plates. <i>Structural Engineering and Mechanics</i> , 1995 , 3, 35-48	4.7	19
	Vibration frequencies for elliptical and semi-elliptical Mindlin plates. Structural Engineering and	4·7 2·4	
102	Vibration frequencies for elliptical and semi-elliptical Mindlin plates. <i>Structural Engineering and Mechanics</i> , 1995 , 3, 35-48 Buckling Solutions of Rectangular Mindlin Plates under Uniform Shear. <i>Journal of Engineering</i>		3
102	Vibration frequencies for elliptical and semi-elliptical Mindlin plates. Structural Engineering and Mechanics, 1995, 3, 35-48 Buckling Solutions of Rectangular Mindlin Plates under Uniform Shear. Journal of Engineering Mechanics - ASCE, 1994, 120, 2462-2470 Axisymmetric Plastic Plates with Ring Supports at Optimum Locations. Journal of Engineering	2.4	3
102	Vibration frequencies for elliptical and semi-elliptical Mindlin plates. Structural Engineering and Mechanics, 1995, 3, 35-48 Buckling Solutions of Rectangular Mindlin Plates under Uniform Shear. Journal of Engineering Mechanics - ASCE, 1994, 120, 2462-2470 Axisymmetric Plastic Plates with Ring Supports at Optimum Locations. Journal of Engineering Mechanics - ASCE, 1994, 120, 400-407 Large Deflection of Beams under Moment Gradient. Journal of Engineering Mechanics - ASCE, 1994,	2.4	3 16 2
102 101 100	Vibration frequencies for elliptical and semi-elliptical Mindlin plates. Structural Engineering and Mechanics, 1995, 3, 35-48 Buckling Solutions of Rectangular Mindlin Plates under Uniform Shear. Journal of Engineering Mechanics - ASCE, 1994, 120, 2462-2470 Axisymmetric Plastic Plates with Ring Supports at Optimum Locations. Journal of Engineering Mechanics - ASCE, 1994, 120, 400-407 Large Deflection of Beams under Moment Gradient. Journal of Engineering Mechanics - ASCE, 1994, 120, 1848-1860 Natural Frequencies Formula for Simply Supported Mindlin Plates. Journal of Vibration and	2.4	3 16 2 41
102 101 100 99 98	Vibration frequencies for elliptical and semi-elliptical Mindlin plates. Structural Engineering and Mechanics, 1995, 3, 35-48 Buckling Solutions of Rectangular Mindlin Plates under Uniform Shear. Journal of Engineering Mechanics - ASCE, 1994, 120, 2462-2470 Axisymmetric Plastic Plates with Ring Supports at Optimum Locations. Journal of Engineering Mechanics - ASCE, 1994, 120, 400-407 Large Deflection of Beams under Moment Gradient. Journal of Engineering Mechanics - ASCE, 1994, 120, 1848-1860 Natural Frequencies Formula for Simply Supported Mindlin Plates. Journal of Vibration and Acoustics, Transactions of the ASME, 1994, 116, 536-540 Closure to Stability of Skew Mindlin Plates under Isotropic In-Plane PressureIby C. M. Wang, S. Kitipornchai, Y. Xiang, and K. M. Liew (February, 1993, Vol. 119, No. 2). Journal of Engineering	2.4 2.4 2.4	3 16 2 41 40

94	Vibration of Triangular Plates: Point Supports, Mixed Edges and Partial Internal Curved Supports. Journal of Sound and Vibration, 1994 , 172, 527-537	3.9	14
93	Buckling And Vibration Of Annular Mindlin Plates With Internal Concentric Ring Supports Subject To In-Plane Radial Pressure. <i>Journal of Sound and Vibration</i> , 1994 , 177, 689-707	3.9	20
92	Flexural Vibration Of Skew Mindlin Plates With Oblique Internal Line Supports. <i>Journal of Sound and Vibration</i> , 1994 , 178, 535-551	3.9	8
91	Theoretical and experimental studies on rectangular liquid dampers under arbitrary excitations. <i>Earthquake Engineering and Structural Dynamics</i> , 1994 , 23, 17-31	4	65
90	Nonlinear analysis of stub-girders using finite element method. <i>Finite Elements in Analysis and Design</i> , 1994 , 18, 329-339	2.2	1
89	Exact vibration solution for initially stressed Mindlin plates on Pasternak foundations. <i>International Journal of Mechanical Sciences</i> , 1994 , 36, 311-316	5.5	78
88	Buckling of triangular Mindlin plates under isotropic inplane compression. <i>Acta Mechanica</i> , 1994 , 102, 123-135	2.1	9
87	Buckling solutions for Mindlin plates of various shapes. <i>Engineering Structures</i> , 1994 , 16, 119-127	4.7	42
86	Buckling of triangular plates under uniform compression. <i>Engineering Structures</i> , 1994 , 16, 43-50	4.7	28
85	Beam-Buckling Analysis via Automated Rayleigh-Ritz Method. <i>Journal of Structural Engineering</i> , 1994 , 120, 200-211	3	6
84	Vibration of Triangular Mindlin Plates Subject to Isotropic In-Plane Stresses. <i>Journal of Vibration and Acoustics, Transactions of the ASME</i> , 1994 , 116, 61-66	1.6	10
83	Buckling of cylindrical shells with internal ring supports. <i>Structural Engineering and Mechanics</i> , 1994 , 2, 369-381		6
82	Static Analysis of Marine Cables via Shooting-Optimization Technique. <i>Journal of Waterway, Port, Coastal and Ocean Engineering</i> , 1993 , 119, 450-457	1.7	5
81	Elastic Buckling of Radially Loaded Circular Plates on Nonaxisymmetric Internal Supports* *Communicated by F. Ziegler <i>Mechanics Based Design of Structures and Machines</i> , 1993 , 21, 545-554		1
80	Stability of Skew Mindlin Plates under Isotropic In-Plane Pressure. <i>Journal of Engineering Mechanics - ASCE</i> , 1993 , 119, 393-401	2.4	14
79	Optimization of Internal Line Support Positions for Plates Against Vibration* *Communicated by K. K. Choi <i>Mechanics Based Design of Structures and Machines</i> , 1993 , 21, 429-454		4
78	Axisymmetric Buckling of Circular Mindlin Plates with Ring Supports. <i>Journal of Structural Engineering</i> , 1993 , 119, 782-793	3	34
77	Buckling of Elliptical Plates under Uniform Pressure. <i>Journal of Structural Engineering</i> , 1993 , 119, 3418-	3 4 25	4

76	Elastic Buckling of Circular Plates Allowing for Prebuckling Deformation. <i>Journal of Engineering Mechanics - ASCE</i> , 1993 , 119, 905-916	2.4	5
75	Stability of Nonsymmetric Cross-Bracing Systems. <i>Journal of Structural Engineering</i> , 1993 , 119, 169-180	3	8
74	Mindlin Plate Buckling with Prebuckling In-Plane Deformation. <i>Journal of Engineering Mechanics - ASCE</i> , 1993 , 119, 1-18	2.4	28
73	Closure to IDse of Engineering Strain and Trefftz Theory in Buckling of Columns Iby C. M. Wang and W. A. M. Alwis (October, 1992, Vol. 118, No. 10). <i>Journal of Engineering Mechanics - ASCE</i> , 1993 , 119, 2537-2538	2.4	
72	OPTIMAL BOUNDING OF CURVES BY CONTINUOUS PIECEWISE LINEAR FUNCTIONS. <i>Engineering Optimization</i> , 1993 , 21, 307-317	2	2
71	Flexural Vibration of In-Plane Loaded Plates with Straight Line/Curved Internal Supports. <i>Journal of Vibration and Acoustics, Transactions of the ASME</i> , 1993 , 115, 441-447	1.6	5
70	Vibration Analysis of Annular Plates with Concentric Supports Using a Variant of Rayleigh-Ritz Method. <i>Journal of Sound and Vibration</i> , 1993 , 163, 137-149	3.9	24
69	Vibration Of Thick Skew Plates Based On Mindlin Shear Deformation Plate Theory. <i>Journal of Sound and Vibration</i> , 1993 , 168, 39-69	3.9	103
68	Buckling of thick skew plates. International Journal for Numerical Methods in Engineering, 1993, 36, 1299)- <u>3</u> .3ॄ10	103
67	Research on elastic buckling of columns, beam and plates: Focussing on formulas and design charts. Journal of Constructional Steel Research, 1993 , 26, 211-230	3.8	5
66	Flexural vibration of shear deformable circular and annular plates on ring supports. <i>Computer Methods in Applied Mechanics and Engineering</i> , 1993 , 110, 301-315	5.7	38
65	Vibration studies on skew plates: Treatment of internal line supports. <i>Computers and Structures</i> , 1993 , 49, 941-951	4.5	32
64	Free vibration of isosceles triangular mindlin plates. <i>International Journal of Mechanical Sciences</i> , 1993 , 35, 89-102	5.5	32
63	Analytical buckling solutions for circular Mindlin plates: inclusion of inplane prebuckling deformation. <i>Archive of Applied Mechanics</i> , 1993 , 63, 534-542	2.2	24
62	pb-2 Rayleigh - Ritz method for general plate analysis. <i>Engineering Structures</i> , 1993 , 15, 55-60	4.7	92
61	Research developments in analyses of plates and shells. <i>Journal of Constructional Steel Research</i> , 1993 , 26, 231-248	3.8	11
60	Buckling of rectangular mindlin plates with internal line supports. <i>International Journal of Solids and Structures</i> , 1993 , 30, 1-17	3.1	59
59	Closure to Elastic Stability of Heavy Rotating Columns Iby C. M. Wang (January, 1990, Vol. 116, No. 1). <i>Journal of Engineering Mechanics - ASCE</i> , 1992 , 118, 218-221	2.4	

58	Optimal Linear Segmented Structures with Variable Segment Boundaries. <i>Journal of Engineering Mechanics - ASCE</i> , 1992 , 118, 2376-2383	2.4	1
57	Use of Engineering Strain and Trefftz Theory in Buckling of Columns. <i>Journal of Engineering Mechanics - ASCE</i> , 1992 , 118, 2135-2140	2.4	3
56	Vibration Analysis of Plates by the pb-2 Rayleigh-Ritz Method: Mixed Boundary Conditions, Reentrant Corners, and Internal Curved Supports* *Communicated by T. Amos. <i>Mechanics Based Design of Structures and Machines</i> , 1992 , 20, 281-292		32
55	Buckling of Skew Plates and Corner Condition for Simply Supported Edges. <i>Journal of Engineering Mechanics - ASCE</i> , 1992 , 118, 651-662	2.4	55
54	Elastic Buckling of Rectangular Plates with Curved Internal Supports. <i>Journal of Structural Engineering</i> , 1992 , 118, 1480-1493	3	19
53	Application of Trefftz theory in thin-plate buckling with in-plane pre-buckling deformations. <i>International Journal of Mechanical Sciences</i> , 1992 , 34, 681-688	5.5	4
52	ShootingBptimization technique for large deflection analysis of structural members. <i>Engineering Structures</i> , 1992 , 14, 231-240	4.7	36
51	Optimal locations of internal line supports for rectangular plates against buckling. <i>Structural Optimization</i> , 1992 , 4, 199-205		7
50	Column buckling under general loads with allowances for pre-buckling shortening and shear deformation. <i>Archive of Applied Mechanics</i> , 1992 , 62, 544-556	2.2	5
49	Generalized shooting method for elastic stability analysis and optimization of structural members. <i>Computers and Structures</i> , 1991 , 38, 73-81	4.5	5
48	Stability formulae for shear-wall frame structures. Building and Environment, 1991, 26, 217-222	6.5	2
47	Buckling of columns: Allowance for axial shortening. <i>International Journal of Mechanical Sciences</i> , 1991 , 33, 613-622	5.5	6
46	Parametric study on distortional buckling of monosymmetric beam-columns. <i>Journal of Constructional Steel Research</i> , 1991 , 18, 89-110	3.8	20
45	Unified approach to structural optimization II: Variable segment boundaries and variable interior point constraints. <i>Structural Optimization</i> , 1991 , 3, 133-140		7
44	Calculation of Effectiveness Factors for Spherical Shells Using Shooting Technique. <i>Journal of Environmental Engineering, ASCE</i> , 1991 , 117, 859-864	2	3
43	Buckling of Columns with Overhang. <i>Journal of Engineering Mechanics - ASCE</i> , 1991 , 117, 2492-2502	2.4	7
42	Discussion of Effect of Axial Compressibility on Buckling of Columns Dy Charles W. Bert (March, 1990, Vol. 116, No. 3). <i>Journal of Engineering Mechanics - ASCE</i> , 1991 , 117, 2173-2175	2.4	3
41	Buckling of Restrained Columns with Shear Deformation and Axial Shortening. <i>Journal of Engineering Mechanics - ASCE</i> , 1991 , 117, 1973-1989	2.4	13

40	Optimal Designs of I-Beams against Lateral Buckling. <i>Journal of Engineering Mechanics - ASCE</i> , 1990 , 116, 1902-1923	2.4	6
39	Elastic Stability of Heavy Rotating Columns. <i>Journal of Engineering Mechanics - ASCE</i> , 1990 , 116, 234-23	892.4	10
38	On the Masur Paradox*. <i>Mechanics Based Design of Structures and Machines</i> , 1990 , 18, 313-334		13
37	Shear-Flexural Buckling of Columns. <i>Journal of Engineering Mechanics - ASCE</i> , 1990 , 116, 1220-1241	2.4	5
36	Discussion of B uckling and Postbuckling of Heavy Columns [by C. Y. Wang (August, 1987, Vol. 113, No. 8). <i>Journal of Engineering Mechanics - ASCE</i> , 1989 , 115, 1840-1841	2.4	
35	New Set of Buckling Parameters for Monosymmetric Beam-Columns/Tie-Beams. <i>Journal of Structural Engineering</i> , 1989 , 115, 1497-1513	3	5
34	An Energy Approach to Elastic Stability Analysis of Multiply Braced Monosymmetric l-Beams. <i>Mechanics Based Design of Structures and Machines</i> , 1989 , 17, 415-429		2
33	Basic Problem on Optimal Spatial Cable Layout. <i>Journal of Engineering Mechanics - ASCE</i> , 1989 , 115, 11	15 <u>2.1</u> 412	0 1
32	A unified approach to optimization of structural members under general constraints. <i>Structural Optimization</i> , 1989 , 1, 215-226		6
31	Optimal pretensioned forces for cable networks. <i>Computers and Structures</i> , 1989 , 33, 1349-1354	4.5	7
30	Extension of Heyman's and Foulkes' theorems to structures with linear segmentation. <i>International Journal of Mechanical Sciences</i> , 1989 , 31, 87-106	5.5	5
29	Optimization of segment-wise linear structures via optimal control theory. <i>Computers and Structures</i> , 1988 , 30, 1367-1373	4.5	6
28	Buckling capacities of braced heavy columns under an axial load. <i>Computers and Structures</i> , 1988 , 28, 563-571	4.5	34
27	Optimal Shape of Arches under Bending and Axial Compression. <i>Journal of Engineering Mechanics - ASCE</i> , 1988 , 114, 898-905	2.4	2
26	Out-of-Plane Buckling Formulas for Beam-Columns/Tie-Beams. <i>Journal of Structural Engineering</i> , 1988 , 114, 2773-2789	3	7
25	Closure to Buckling Capacities of Monosymmetric I-Beams By Chien M. Wang and Sritawat Kitipornchai (November 1986, Vol. 112, No. 11). <i>Journal of Structural Engineering</i> , 1988 , 114, 739-740	3	2
24	Optimal Shape of Least Weight Arches 1988 , 347-354		
23	OPTIMAL DESIGN OF MULTISPAN CONTINUOUS CABLES WITH GENERAL SUPPORT CONDITIONS. <i>Engineering Optimization</i> , 1987 , 12, 299-314	2	4

22	Closure to Buckling of Monosymmetric I-Beams Under Moment Gradient by Sritawat Kitipornchai, Chien Ming Wang, and Nicholas S. Trahair (April, 1986, Vol. 112, No. 4). <i>Journal of Structural Engineering</i> , 1987 , 113, 1391-1395	3	9
21	Buckling of braced monosymmetric cantilevers. <i>International Journal of Mechanical Sciences</i> , 1987 , 29, 321-337	5.5	14
20	Optimization of multispan plane Prager-structures with variable support locations. <i>Engineering Structures</i> , 1987 , 9, 157-161	4.7	12
19	Buckling of braced monosymmetric cantilevers 1987 , 29, 321-321		6
18	Optimal plastic design of circular plates: Numerical solutions and built-in edges. <i>Computers and Structures</i> , 1986 , 22, 519-528	4.5	2
17	Lateral buckling of tee beams under moment gradient. <i>Computers and Structures</i> , 1986 , 23, 69-76	4.5	18
16	Optimal design of tie-beams. <i>International Journal of Solids and Structures</i> , 1986 , 22, 1343-1356	3.1	
15	Optimal design of tapered beams for maximum buckling strength. <i>Engineering Structures</i> , 1986 , 8, 276-7	2 <i>84</i> 7	7
14	On stability of monosymmetric cantilevers. <i>Engineering Structures</i> , 1986 , 8, 169-180	4.7	31
13	LEAST WEIGHT CABLES: OPTIMAL PARAMETER SELECTION APPROACH. Engineering Optimization, 1986, 9, 249-263	2	11
12	Buckling of Monosymmetric I-Beams under Moment Gradient. <i>Journal of Structural Engineering</i> , 1986 , 112, 781-799	3	69
11	Buckling Capacities of Monosymmetric I-Beams. <i>Journal of Structural Engineering</i> , 1986 , 112, 2373-2391	3	31
10	On the Optimality Criteria for Archgrids. <i>Journal of Structural Engineering</i> , 1986 , 112, 185-189	3	2
9	Cable Optimization under Selfweight and Concentrated Loads* * Communicated by G. I. N. Rozvany <i>Journal of Structural Mechanics</i> , 1986 , 14, 191-207		9
8	Minimum weight design of cables with supports at different levels. <i>International Journal of Mechanical Sciences</i> , 1985 , 27, 519-529	5.5	5
7	ON OPTIMAL ARCHGRIDS. Engineering Optimization, 1985, 8, 315-331	2	2
6	Optimal Shape of Cables. <i>Journal of Engineering Mechanics - ASCE</i> , 1984 , 110, 1649-1653	2.4	6
5	Optimal plastic design of axisymmetric solid plates with a maximum thickness constraint. <i>Computers and Structures</i> , 1984 , 18, 653-665	4.5	26

LIST OF PUBLICATIONS

4	On plane Prager-structures II International Journal of Mechanical Sciences, 1983, 25, 519-527	5.5	53
3	On plane Prager-structures I I. International Journal of Mechanical Sciences, 1983 , 25, 529-541	5.5	27
2	Exact Solutions for Buckling of Structural Members		80
1	Structural Vibration		20