Selvan Bellan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6034327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluidization behavior of redox metal oxide and spinel particles to develop high-energy-density thermal energy storage system for concentrated solar power applications. Journal of Thermal Science and Technology, 2022, 17, 22-00061-22-00061.	1.1	1
2	Conjugate radiation-convection-conduction simulation of cubic lattice solar receiver with high porosity for high-temperature heat absorption. Journal of Thermal Science and Technology, 2022, 17, 22-00057-22-00057.	1.1	3
3	Hydrogen production by solar fluidized bed reactor using ceria: Euler-Lagrange modelling of gas-solid flow to optimize the internally circulating fluidized bed. Journal of Thermal Science and Technology, 2022, 17, 22-00076-22-00076.	1.1	2
4	A review on highâ€ŧemperature thermochemical heat storage: Particle reactors and materials based on solid–gas reactions. Wiley Interdisciplinary Reviews: Energy and Environment, 2022, 11, .	4.1	9
5	Phase Change Material of Copper–Germanium Alloy as Solar Latent Heat Storage at High Temperatures. Frontiers in Energy Research, 2021, 9, .	2.3	7
6	Direct simulation of a volumetric solar receiver with different cell sizes at high outlet temperatures (1,000–1,500â€Â°C). Renewable Energy, 2020, 146, 1143-1152.	8.9	19
7	Thermal charge/discharge performance of iron–germanium alloys as phase change materials for solar latent heat storage at high temperatures. Journal of Energy Storage, 2020, 30, 101420.	8.1	10
8	Thermochemical two-step CO2 splitting using La0.7Sr0.3Mn0.9Cr0.1O3 of perovskite oxide for solar fuel production. AIP Conference Proceedings, 2020, , .	0.4	4
9	Chemical compatibility of Cu-Ge alloy with container materials for latent heat storage system. AIP Conference Proceedings, 2020, , .	0.4	0
10	Thermochemical H2O splitting using LaSrMnCrO3 of perovskite oxides for solar hydrogen production. AIP Conference Proceedings, 2020, , .	0.4	4
11	Experimental study of Mn-CeO2 coated ceramic foam device for two-step water splitting cycle hydrogen production with 3kW sun-simulator. AIP Conference Proceedings, 2020, , .	0.4	1
12	Numerical analysis on solidification process of PCM in triplex-tube thermal energy storage system. AIP Conference Proceedings, 2020, , .	0.4	1
13	Loop thermosiphon thermal collector for waste heat recovery power generation. Experimental Heat Transfer, 2019, 32, 201-218.	3.2	8
14	Direct Simulation of Volumetric Solar Receiver with Highly Concentrated Radiation. IOP Conference Series: Materials Science and Engineering, 2019, 556, 012060.	0.6	1
15	Heat transfer and fluid flow analysis of a fluidized bed reactor for beam-down optics. AIP Conference Proceedings, 2019, , .	0.4	0
16	Fe-doped manganese oxide redox material for thermochemical energy storage at high-temperatures. AIP Conference Proceedings, 2019, , .	0.4	5
17	Thermochemical two-step water splitting cycle using perovskite oxides based on LaSrMnO3 redox system for solar H2 production. Thermochimica Acta, 2019, 680, 178374.	2.7	26
18	Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: First performance test on two-step water splitting with ceria using a Miyazaki solar concentrating system. AIP Conference Proceedings, 2019, , .	0.4	6

Selvan Bellan

#	Article	IF	CITATIONS
19	Thermochemical behavior of perovskite oxides based on LaxSr1-x(Mn, Fe, Co)O3-Î′ and BaySr1-yCoO3-Î′ redox system for thermochemical energy storage at high temperatures. Energy, 2019, 171, 971-980.	8.8	37
20	Efficiency and heat loss analysis of honeycomb receiver varying air mass flow rate and beam width. International Journal of Heat and Mass Transfer, 2019, 137, 1027-1040.	4.8	9
21	Steady-Flow-Type Particle Receiver for High-Temperature Solar Thermal Storage. IOP Conference Series: Materials Science and Engineering, 2019, 556, 012059.	0.6	1
22	Heat transfer and particulate flow analysis of a 30†kW directly irradiated solar fluidized bed reactor for thermochemical cycling. Chemical Engineering Science, 2019, 203, 511-525.	3.8	23
23	Thermal performance of a 30†kW fluidized bed reactor for solar gasification: A CFD-DEM study. Chemical Engineering Journal, 2019, 360, 1287-1300.	12.7	33
24	Development of a 5kWth internally circulating fluidized bed reactor containing quartz sand for continuously-fed coal-coke gasification and a beam-down solar concentrating system. Energy, 2019, 166, 1-16.	8.8	25
25	A CFD-DEM study of hydrodynamics with heat transfer in a gas-solid fluidized bed reactor for solar thermal applications. International Journal of Heat and Mass Transfer, 2018, 116, 377-392.	4.8	53
26	CFD-DEM investigation on flow and temperature distribution of ceria particles in a beam-down fluidized bed reactor. AIP Conference Proceedings, 2018, , .	0.4	1
27	Particle fluidized bed receiver/reactor with a beam-down solar concentrating optics: Performance test of two-step water splitting with ceria particles using 30-kWth sun-simulator. AIP Conference Proceedings, 2018, , .	0.4	9
28	Preliminary tests of batch type fluidized bed reactor for development of continuously-feeding fluidized bed reactor - An elevated temperature and gasification processes. AIP Conference Proceedings, 2018, , .	0.4	1
29	Conjugate radiation-convection-conduction simulation of volumetric solar receivers with cut-back inlets. Solar Energy, 2018, 170, 606-617.	6.1	27
30	Numerical and experimental study on granular flow and heat transfer characteristics of directly-irradiated fluidized bed reactor for solarÂgasification. International Journal of Hydrogen Energy, 2018, 43, 16443-16457.	7.1	23
31	Heat transfer analysis of 5kWth circulating fluidized bed reactor for solar gasification using concentrated Xe light radiation. Energy, 2018, 160, 245-256.	8.8	23
32	GAS-SOLID FLOW AND HEAT TRANSFER CHARACTERISTICS OF A FLUIDIZED BED REACTOR FOR SOLAR THERMAL APPLICATIONS. , 2018, , .		0
33	Melting of PCM in Capsule by Forced Convection for Packed Bed Latent Heat Storage System The Proceedings of the Thermal Engineering Conference, 2018, 2018, 0061.	0.0	0
34	CONJUGATED RADIATION-CONVECTION-CONDUCTION HEAT TRANSFER ANALYSIS OF VOLUMETRIC RECEIVER WITH HIGHLY CONCENTRATED RADIATION. , 2018, , .		0
35	Melting Process of PCM in Cylindrical Ceramic Capsule for Solar Thermal Storage. The Proceedings of the Thermal Engineering Conference, 2018, 2018, 0060.	0.0	0
36	Numerical analysis of latent heat storage system with encapsulated phase change material in spherical capsules. Renewable Energy and Environmental Sustainability, 2017, 2, 3.	1.4	4

Selvan Bellan

#	Article	IF	CITATIONS
37	Particle reactors for solar thermochemical processes. Solar Energy, 2017, 156, 113-132.	6.1	74
38	Numerical analysis of fluid flow and heat transfer during melting inside a cylindrical container for thermal energy storage system. AIP Conference Proceedings, 2017, , .	0.4	1
39	CFD-DEM investigation of particles circulation pattern of two-tower fluidized bed reactor for beam-down solar concentrating system. Powder Technology, 2017, 319, 228-237.	4.2	26
40	Buoyancy-opposed volumetric solar receiver with beam-down optics irradiation. Energy, 2017, 141, 2337-2350.	8.8	14
41	Thermal storage/discharge performances of Cu-Si alloy for solar thermochemical process. AlP Conference Proceedings, 2017, , .	0.4	1
42	Numerical modelling of a 100-Wh lab-scale thermochemical heat storage system for concentrating solar power plants. AIP Conference Proceedings, 2016, , .	0.4	3
43	Development of a Solarized Rotary Kiln for High-Temperature Chemical Processes. , 2016, , .		0
44	Numerical Investigation of PCM-based Thermal Energy Storage System. Energy Procedia, 2015, 69, 758-768.	1.8	18
45	Numerical and experimental studies on heat transfer characteristics of thermal energy storage system packed with molten salt PCM capsules. Applied Thermal Engineering, 2015, 90, 970-979.	6.0	127
46	Comparison of an Experimental and Numerical Investigation of a Packed-Bed Latent Heat Thermal Storage System with Encapsulated Phase Change Material. , 2015, , .		0
47	Numerical Modeling of Thermal Energy Storage System. , 2014, , .		2
48	Transient Numerical Analysis of Storage Tanks Based on Encapsulated PCMs for Heat Storage in Concentrating Solar Power Plants. Energy Procedia, 2014, 57, 672-681.	1.8	14
49	Numerical analysis of charging and discharging performance of a thermal energy storage system with encapsulated phase change material. Applied Thermal Engineering, 2014, 71, 481-500.	6.0	99
50	Numerical Modeling of Solar Thermochemical Reactor for Kinetic Analysis. Energy Procedia, 2014, 49, 735-742.	1.8	9
51	Numerical Study of a Beam-Down Solar Thermochemical Reactor for Chemical Kinetics Analysis. , 2014, , .		0
52	Thermal performance of lab-scale solar reactor designed for kinetics analysis at high radiation fluxes. Chemical Engineering Science, 2013, 101, 81-89.	3.8	28