Mohd Omaish Ansari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6034094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Band gap engineered TiO ₂ nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Journal of Materials Chemistry A, 2014, 2, 637-644.	10.3	751
2	Nitrogen-doped titanium dioxide (N-doped TiO ₂) for visible light photocatalysis. New Journal of Chemistry, 2016, 40, 3000-3009.	2.8	549
3	Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale, 2013, 5, 9238.	5.6	523
4	Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag–ZnO Nanocomposite. Journal of Physical Chemistry C, 2013, 117, 27023-27030.	3.1	368
5	Defect-Induced Band Gap Narrowed CeO ₂ Nanostructures for Visible Light Activities. Industrial & Engineering Chemistry Research, 2014, 53, 9754-9763.	3.7	278
6	Band gap engineering of CeO ₂ nanostructure using an electrochemically active biofilm for visible light applications. RSC Advances, 2014, 4, 16782-16791.	3.6	266
7	Highly Visible Light Responsive, Narrow Band gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications. Scientific Reports, 2016, 6, 25405.	3.3	222
8	Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach. Nanoscale, 2013, 5, 4427.	5.6	219
9	Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO2) nanocomposites. Sensors and Actuators B: Chemical, 2011, 157, 122-129.	7.8	159
10	Anion selective pTSA doped polyaniline@graphene oxide-multiwalled carbon nanotube composite for Cr(VI) and Congo red adsorption. Journal of Colloid and Interface Science, 2017, 496, 407-415.	9.4	159
11	Simple and Large Scale Construction of MoS2-g-C3N4 Heterostructures Using Mechanochemistry for High Performance Electrochemical Supercapacitor and Visible Light Photocatalytic Applications. Scientific Reports, 2017, 7, 43055.	3.3	157
12	Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity. Nanoscale, 2013, 5, 6323.	5.6	155
13	Simultaneous sulfur doping and exfoliation of graphene from graphite using an electrochemical method for supercapacitor electrode materials. Journal of Materials Chemistry A, 2016, 4, 233-240.	10.3	151
14	Environmentally Sustainable Fabrication of Ag@ <i>g-</i> C ₃ N ₄ Nanostructures and Their Multifunctional Efficacy as Antibacterial Agents and Photocatalysts. ACS Applied Nano Materials, 2018, 1, 2912-2922.	5.0	142
15	CdS-graphene Nanocomposite for Efficient Visible-light-driven Photocatalytic and Photoelectrochemical Applications. Journal of Colloid and Interface Science, 2016, 482, 221-232.	9.4	140
16	Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells. Physical Chemistry Chemical Physics, 2016, 18, 9053-9060.	2.8	133
17	Ce3+-ion, Surface Oxygen Vacancy, and Visible Light-induced Photocatalytic Dye Degradation and Photocapacitive Performance of CeO2-Graphene Nanostructures. Scientific Reports, 2017, 7, 5928.	3.3	133
18	Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New Journal of Chemistry, 2015, 39, 8121-8129.	2.8	130

#	Article	IF	CITATIONS
19	Self-Assembled 3D Flower-Like Nickel Hydroxide Nanostructures and Their Supercapacitor Applications. Scientific Reports, 2016, 6, 27318.	3.3	127
20	Silver nanoparticles and defect-induced visible light photocatalytic and photoelectrochemical performance of Ag@m-TiO2 nanocomposite. Solar Energy Materials and Solar Cells, 2015, 141, 162-170.	6.2	126
21	Facile Synthesis of SnS ₂ Nanostructures with Different Morphologies for High-Performance Supercapacitor Applications. ACS Omega, 2018, 3, 1581-1588.	3.5	125
22	Biogenic Fabrication of Au@CeO ₂ Nanocomposite with Enhanced Visible Light Activity. Journal of Physical Chemistry C, 2014, 118, 9477-9484.	3.1	123
23	DBSA doped polyaniline/multi-walled carbon nanotubes composite for high efficiency removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 2013, 228, 748-755.	12.7	122
24	Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route. Journal of Industrial and Engineering Chemistry, 2014, 20, 1602-1607.	5.8	104
25	Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO ₂ nanocomposites synthesized using an electrochemically active biofilm. RSC Advances, 2014, 4, 26013-26021.	3.6	103
26	Electrochemically active biofilm assisted synthesis of Ag@CeO2 nanocomposites for antimicrobial activity, photocatalysis and photoelectrodes. Journal of Colloid and Interface Science, 2014, 431, 255-263.	9.4	102
27	Visible light-induced enhanced photoelectrochemical and photocatalytic studies of gold decorated SnO ₂ nanostructures. New Journal of Chemistry, 2015, 39, 2758-2766.	2.8	101
28	Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer. Scientific Reports, 2017, 7, 39555.	3.3	97
29	Enhanced electrochemical behavior and hydrophobicity of crystalline polyaniline@graphene nanocomposite synthesized at elevated temperature. Composites Part B: Engineering, 2016, 87, 281-290.	12.0	94
30	Polythiophene nanocomposites for photodegradation applications: Past, present and future. Journal of Saudi Chemical Society, 2015, 19, 494-504.	5.2	91
31	Mechanically exfoliated MoS2 sheet coupled with conductive polyaniline as a superior supercapacitor electrode material. Journal of Colloid and Interface Science, 2017, 504, 276-282.	9.4	91
32	Gold nanoparticles-sensitized wide and narrow band gap TiO ₂ for visible light applications: a comparative study. New Journal of Chemistry, 2015, 39, 4708-4715.	2.8	90
33	Recent progress of metal–graphene nanostructures in photocatalysis. Nanoscale, 2018, 10, 9427-9440.	5.6	89
34	Graphene and its derivatives: synthesis, modifications, and applications in wastewater treatment. Environmental Chemistry Letters, 2018, 16, 1301-1323.	16.2	84
35	Simultaneous Enhancement of Methylene Blue Degradation and Power Generation in a Microbial Fuel Cell by Gold Nanoparticles. Industrial & Engineering Chemistry Research, 2013, 52, 8174-8181.	3.7	81
36	Enhanced Thermal Stability under DC Electrical Conductivity Retention and Visible Light Activity of Ag/TiO ₂ @Polyaniline Nanocomposite Film. ACS Applied Materials & Interfaces, 2014, 6, 8124-8133.	8.0	81

#	Article	IF	CITATIONS
37	Synergistically effective and highly visible light responsive SnO2-g-C3N4 nanostructures for improved photocatalytic and photoelectrochemical performance. Applied Surface Science, 2019, 495, 143432.	6.1	77
38	Enhanced thermoelectric behaviour and visible light activity of Ag@TiO ₂ /polyaniline nanocomposite synthesized by biogenic-chemical route. RSC Advances, 2014, 4, 23713-23719.	3.6	75
39	Metal free earth abundant elemental red phosphorus: a new class of visible light photocatalyst and photoelectrode materials. Physical Chemistry Chemical Physics, 2016, 18, 3921-3928.	2.8	74
40	pTSA doped conducting graphene/polyaniline nanocomposite fibers: Thermoelectric behavior and electrode analysis. Chemical Engineering Journal, 2014, 242, 155-161.	12.7	73
41	Thermal stability in terms of DC electrical conductivity retention and the efficacy of mixing technique in the preparation of nanocomposites of graphene/polyaniline over the carbon nanotubes/polyaniline. Composites Part B: Engineering, 2013, 47, 155-161.	12.0	72
42	Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor. Materials Science and Engineering C, 2013, 33, 4692-4699.	7.3	70
43	Electrochemically active biofilm mediated bio-hydrogen production catalyzed by positively charged gold nanoparticles. International Journal of Hydrogen Energy, 2013, 38, 5243-5250.	7.1	70
44	Route to High Surface Area, Mesoporosity of Polyaniline–Titanium Dioxide Nanocomposites via One Pot Synthesis for Energy Storage Applications. Industrial & Engineering Chemistry Research, 2016, 55, 116-124.	3.7	70
45	Sulfur-doped-graphitic-carbon nitride (S-g-C3N4) for low cost electrochemical sensing of hydrazine. Journal of Alloys and Compounds, 2020, 816, 152522.	5.5	70
46	Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells. International Journal of Molecular Sciences, 2017, 18, 25.	4.1	67
47	Highly photoactive SnO ₂ nanostructures engineered by electrochemically active biofilm. New Journal of Chemistry, 2014, 38, 2462-2469.	2.8	66
48	Adsorption promoted visible-light-induced photocatalytic degradation of antibiotic tetracycline by tin oxide/cerium oxide nanocomposite. Applied Surface Science, 2021, 565, 150337.	6.1	62
49	Electroconductive biomaterials for cardiac tissue engineering. Acta Biomaterialia, 2022, 139, 118-140.	8.3	61
50	Adsorption of Brilliant Green by Surfactant Doped Polyaniline/MWCNTs Composite: Evaluation of the Kinetic, Thermodynamic, and Isotherm. Industrial & Engineering Chemistry Research, 2014, 53, 7167-7175.	3.7	60
51	Biofilm-Assisted Fabrication of Ag@SnO ₂ - <i>g</i> -C ₃ N ₄ Nanostructures for Visible Light-Induced Photocatalysis and Photoelectrochemical Performance. Journal of Physical Chemistry C, 2019, 123, 20936-20948.	3.1	60
52	Solid-state symmetrical supercapacitor based on hierarchical flower-like nickel sulfide with shape-controlled morphological evolution. Electrochimica Acta, 2018, 268, 82-93.	5.2	59
53	Thermal stability and electrical properties of dodecyl-benzene-sulfonic-acid doped nanocomposites of polyaniline and multi-walled carbon nanotubes. Composites Part B: Engineering, 2012, 43, 3541-3548.	12.0	57
54	Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms. Biotechnology Advances, 2013, 31, 915-924.	11.7	57

#	Article	IF	CITATIONS
55	Earth-abundant stable elemental semiconductor red phosphorus-based hybrids for environmental remediation and energy storage applications. RSC Advances, 2016, 6, 44616-44629.	3.6	56
56	Facile and Scale Up Synthesis of Red Phosphorus-Graphitic Carbon Nitride Heterostructures for Energy and Environment Applications. Scientific Reports, 2016, 6, 27713.	3.3	56
57	Simple and rapid synthesis of ternary polyaniline/titanium oxide/graphene by simultaneous TiO2 generation and aniline oxidation as hybrid materials for supercapacitor applications. Journal of Solid State Electrochemistry, 2017, 21, 57-68.	2.5	56
58	Three-dimensional SnS2 nanopetals for hybrid sodium-air batteries. Electrochimica Acta, 2017, 257, 328-334.	5.2	53
59	Environmentally sustainable biogenic fabrication of AuNP decorated-graphitic g-C ₃ N ₄ nanostructures towards improved photoelectrochemical performances. RSC Advances, 2018, 8, 13898-13909.	3.6	50
60	Enhanced thermoelectric performance and ammonia sensing properties of sulfonated polyaniline/graphene thin films. Materials Letters, 2014, 114, 159-162.	2.6	46
61	Mixed Culture Electrochemically Active Biofilms and their Microscopic and Spectroelectrochemical Studies. ACS Sustainable Chemistry and Engineering, 2014, 2, 423-432.	6.7	46
62	Facile route to a conducting ternary polyaniline@TiO ₂ /GN nanocomposite for environmentally benign applications: photocatalytic degradation of pollutants and biological activity. RSC Advances, 2016, 6, 111308-111317.	3.6	45
63	Positively Charged Gold Nanoparticles Synthesized by Electrochemically Active Biofilm—A Biogenic Approach. Journal of Nanoscience and Nanotechnology, 2013, 13, 6079-6085.	0.9	44
64	Graphene integrated polyaniline nanostructured composite coating for protecting steels from corrosion: Synthesis, characterization, and protection mechanism of the coating material in acidic environment. Construction and Building Materials, 2016, 115, 618-633.	7.2	44
65	Three-dimensional, highly porous N-doped carbon foam as microorganism propitious, efficient anode for high performance microbial fuel cell. RSC Advances, 2016, 6, 25799-25807.	3.6	44
66	Manganese oxide as an effective electrode material for energy storage: a review. Environmental Chemistry Letters, 2022, 20, 283-309.	16.2	44
67	Electrically conductive polyaniline sensitized defective-TiO ₂ for improved visible light photocatalytic and photoelectrochemical performance: a synergistic effect. New Journal of Chemistry, 2015, 39, 8381-8388.	2.8	42
68	Design of ternary Ni(OH)2/graphene oxide/TiO2 nanocomposite for enhanced photocatalytic degradation of organic, microbial contaminants, and aerobic digestion of dairy wastewater. Journal of Cleaner Production, 2020, 258, 120588.	9.3	42
69	Ammonia vapor sensing and electrical properties of fibrous multi-walled carbon nanotube/polyaniline nanocomposites prepared in presence of cetyl-trimethylammonium bromide. Journal of Industrial and Engineering Chemistry, 2014, 20, 2010-2017.	5.8	41
70	Facile synthesis of ternary nanocomposite of polypyrrole incorporated with cobalt oxide and silver nanoparticles for high performance supercapattery. Electrochimica Acta, 2020, 348, 136313.	5.2	41
71	Ternary Composite of Polyaniline Graphene and TiO ₂ as a Bifunctional Catalyst to Enhance the Performance of Both the Bioanode and Cathode of a Microbial Fuel Cell. Industrial & Engineering Chemistry Research, 2018, 57, 6705-6713.	3.7	40
72	Improved electrode performance in microbial fuel cells and the enhanced visible light-induced photoelectrochemical behaviour of PtO @M-TiO2 nanocomposites. Ceramics International, 2015, 41, 9131-9139.	4.8	39

#	Article	IF	CITATIONS
73	Facile electrochemical assisted synthesis of ZnO/graphene nanosheets with enhanced photocatalytic activity. RSC Advances, 2015, 5, 97788-97797.	3.6	39
74	Properties and application of MoS2 nanopowder: Characterization, Congo red dye adsorption, and optimization. Journal of Materials Research and Technology, 2021, 13, 1169-1180.	5.8	39
75	Synthesis, characterization, photolytic degradation, electrical conductivity and applications of a nanocomposite adsorbent for the treatment of pollutants. RSC Advances, 2012, 2, 7207.	3.6	38
76	Simple route for the generation of differently functionalized PVC@graphene–polyaniline fiber bundles for the removal of Congo red from wastewater. RSC Advances, 2015, 5, 61486-61494.	3.6	38
77	Simple route for gram synthesis of less defective few layered graphene and its electrochemical performance. RSC Advances, 2015, 5, 44920-44927.	3.6	38
78	A sensitive electrochemical detection of hydrazine based on SnO2/CeO2 nanostructured oxide. Microchemical Journal, 2021, 171, 106784.	4.5	38
79	CuO sputtered flexible polyaniline@graphene thin films:A recyclable photocatalyst with enhanced electrical properties. Composites Part B: Engineering, 2019, 175, 107092.	12.0	36
80	Hydrothermally Assisted Synthesis of Porous Polyaniline@Carbon Nanotubes–Manganese Dioxide Ternary Composite for Potential Application in Supercapattery. Polymers, 2020, 12, 2918.	4.5	36
81	Fabrication of binary SnO2/TiO2 nanocomposites under a sonication-assisted approach: Tuning of band-gap and water depollution applications under visible light irradiation. Ceramics International, 2021, 47, 15073-15081.	4.8	36
82	Ag-modified SnO2-graphitic-carbon nitride nanostructures for electrochemical sensor applications. Ceramics International, 2021, 47, 23578-23589.	4.8	36
83	Manganese dioxide nanorods intercalated reduced graphene oxide nanocomposite toward high performance electrochemical supercapacitive electrode materials. Journal of Colloid and Interface Science, 2017, 506, 613-619.	9.4	34
84	Effect of nitrogen doping on the catalytic activity of carbon nano-onions for the oxygen reduction reaction in microbial fuel cells. Journal of Industrial and Engineering Chemistry, 2020, 81, 269-277.	5.8	34
85	Facile spectroscopic approach to obtain the optoelectronic properties of few-layered graphene oxide thin films and their role in photocatalysis. New Journal of Chemistry, 2017, 41, 14217-14227.	2.8	33
86	Adsorption modeling and mechanistic insight of hazardous chromium on para toluene sulfonic acid immobilized-polyaniline@CNTs nanocomposites. Journal of Saudi Chemical Society, 2019, 23, 188-197.	5.2	33
87	Fabrication of Novel Al(OH) ₃ /CuMnAl-Layered Double Hydroxide for Detoxification of Organic Contaminants from Aqueous Solution. ACS Omega, 2019, 4, 18268-18278.	3.5	33
88	Electrochemically synthesized sulfur-doped graphene as a superior metal-free cathodic catalyst for oxygen reduction reaction in microbial fuel cells. RSC Advances, 2016, 6, 103446-103454.	3.6	31
89	Feasibility of using hollow double walled Mn2O3 nanocubes for hybrid Na-air battery. Chemical Engineering Journal, 2019, 360, 415-422.	12.7	31
90	Electrical conductivity, optical property and ammonia sensing studies on HCl Doped Au@polyaniline nanocomposites. Electronic Materials Letters, 2015, 11, 1-6.	2.2	28

#	Article	IF	CITATIONS
91	A simple route to layer-by-layer assembled few layered graphene oxide nanosheets: Optical, dielectric and antibacterial aspects. Journal of Molecular Liquids, 2018, 253, 284-296.	4.9	28
92	Defected graphene nano-platelets for enhanced hydrophilic nature and visible light-induced photoelectrochemical performances. Journal of Physics and Chemistry of Solids, 2017, 104, 233-242.	4.0	27
93	Electrochemically active biofilm-assisted biogenic synthesis of an Ag-decorated ZnO@C core–shell ternary plasmonic photocatalyst with enhanced visible-photocatalytic activity. New Journal of Chemistry, 2018, 42, 1995-2005.	2.8	27
94	A metal-free and non-precious multifunctional 3D carbon foam for high-energy density supercapacitors and enhanced power generation in microbial fuel cells. Journal of Industrial and Engineering Chemistry, 2018, 60, 431-440.	5.8	27
95	Dodecylbenzenesulfonic acid micelles assisted in situ preparation and enhanced thermoelectric performance of semiconducting polyaniline–zirconium oxide nanocomposites. Journal of Industrial and Engineering Chemistry, 2013, 19, 1653-1658.	5.8	26
96	Structural, optical, and photocatalytic investigation of nickel oxide@graphene oxide nanocomposite thin films by RF magnetron sputtering. Journal of Materials Science, 2018, 53, 15034-15050.	3.7	25
97	Synthesis and characterization of S-doped-rGO/ZnS nanocomposite for the photocatalytic degradation of 2-chlorophenol and disinfection of real dairy wastewater. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 377, 190-197.	3.9	25
98	Sulfonated polyaniline-encapsulated graphene@graphitic carbon nitride nanocomposites for significantly enhanced photocatalytic degradation of phenol: a mechanistic study. New Journal of Chemistry, 2020, 44, 19570-19580.	2.8	25
99	Graphene Decorated Zinc Oxide and Curcumin to Disinfect the Methicillin-Resistant Staphylococcus aureus. Nanomaterials, 2020, 10, 1004.	4.1	25
100	High Performance Supercapacitor Applications and DC Electrical Conductivity Retention on Surfactant Immobilized Macroporous Ternary Polypyrrole/Graphitic-C3N4@Graphene Nanocomposite. Electronic Materials Letters, 2019, 15, 238-246.	2.2	24
101	Ammonia sensing and DC electrical conductivity studies of p-toluene sulfonic acid doped cetyltrimethylammonium bromide assisted V2O5@polyaniline composite nanofibers. Journal of Industrial and Engineering Chemistry, 2015, 22, 147-152.	5.8	23
102	Synthesis and Antibacterial Aspects of Graphitic C3N4@Polyaniline Composites. Coatings, 2020, 10, 950.	2.6	22
103	Cobalt Oxide Nanograins and Silver Nanoparticles Decorated Fibrous Polyaniline Nanocomposite as Battery-Type Electrode for High Performance Supercapattery. Polymers, 2020, 12, 2816.	4.5	22
104	Graphene and Graphene-Based Materials in Biomedical Applications. Current Medicinal Chemistry, 2019, 26, 6834-6850.	2.4	22
105	Facile strategy for the synthesis of non-covalently bonded and para-toluene sulfonic acid-functionalized fibrous polyaniline@graphene–PVC nanocomposite for the removal of Congo red. New Journal of Chemistry, 2015, 39, 7004-7011.	2.8	21
106	Synthesis of highly crystalline polyaniline nanoparticles by simple chemical route. Materials Letters, 2015, 161, 372-374.	2.6	21
107	Intercalated reduced graphene oxide and its content effect on the supercapacitance performance of the three dimensional flower-like β-Ni(OH) ₂ architecture. New Journal of Chemistry, 2017, 41, 10467-10475.	2.8	20
108	Room temperature growth of half-metallic Fe3O4 thin films on polycarbonate by reactive sputtering: Heterostructures for flexible spintronics. Journal of Alloys and Compounds, 2020, 816, 152532.	5.5	20

#	Article	IF	CITATIONS
109	Magnetite thin films grown on different flexible polymer substrates at room temperature: Role of antiphase boundaries in electrical and magnetic properties. Journal of Alloys and Compounds, 2020, 846, 156368.	5.5	20
110	Thermal stability of HClâ€dopedâ€polyaniline and TiO ₂ nanoparticlesâ€based nanocomposites. Journal of Applied Polymer Science, 2012, 124, 4433-4442.	2.6	19
111	Carbothermal process-derived porous N-doped carbon for flexible energy storage: Influence of carbon surface area and conductivity. Chemical Engineering Journal, 2019, 378, 122158.	12.7	19
112	Facile synthesis of silver decorated reduced graphene oxide@zinc oxide as ternary nanocomposite: an efficient photocatalyst for the enhanced degradation of organic dye under UV–visible light. Journal of Materials Science, 2021, 56, 7434-7450.	3.7	17
113	Structural and optical characteristics, and bacterial decolonization studies on non-reactive RF sputtered Cu–ZnO@ graphene based nanoparticles thin films. Journal of Materials Science, 2019, 54, 6515-6529.	3.7	16
114	Microbial fuel cell-assisted biogenic synthesis of gold nanoparticles and its application to energy production and hydrogen peroxide detection. Korean Journal of Chemical Engineering, 2020, 37, 1241-1250.	2.7	16
115	Morphology and Thermal Stability of Electrically Conducting Nanocomposites Prepared by Sulfosalicylic Acid Micelles Assisted Polymerization of Aniline in Presence of ZrO ₂ Nanoparticles. Polymer-Plastics Technology and Engineering, 2013, 52, 472-477.	1.9	15
116	Graphene nanodiscs from electrochemical assisted micromechanical exfoliation of graphite: Morphology and supramolecular behavior. Materials Express, 2015, 5, 471-479.	0.5	15
117	Effect of Co2+ and Ni2+ co-doping on SnO2 synthesized via phytogenic method for photoantioxidant studies and photoconversion of 4-nitrophenol. Materials Today Communications, 2020, 25, 101677.	1.9	15
118	Bio-synthesis of finely distributed Ag nanoparticle-decorated TiO2 nanorods for sunlight-induced photoelectrochemical water splitting. Journal of Industrial and Engineering Chemistry, 2019, 69, 48-56.	5.8	14
119	Hydrogen Evolution Reaction by Atomic Layerâ€Deposited MoN _{<i>x</i>} on Porous Carbon Substrates: The Effects of Porosity and Annealing on Catalyst Activity and Stability. ChemSusChem, 2020, 13, 4159-4168.	6.8	14
120	Silver Nanoparticles Embedded on Reduced Graphene Oxide@Copper Oxide Nanocomposite for High Performance Supercapacitor Applications. Materials, 2021, 14, 5032.	2.9	14
121	Phenol removal and hydrogen production from water: Silver nanoparticles decorated on polyaniline wrapped zinc oxide nanorods. Journal of Industrial and Engineering Chemistry, 2022, 109, 347-358.	5.8	14
122	Facile and single-step route towards ZnO@C core–shell nanoparticles as an oxygen vacancy induced visible light active photocatalyst using the thermal decomposition of Zn(an)2(NO3)2. RSC Advances, 2016, 6, 70644-70652.	3.6	13
123	Facile route to porous polyaniline@nanodiamond-graphene based nanohybrid structures for DC electrical conductivity retention and supercapacitor applications. Journal of Polymer Research, 2019, 26, 1.	2.4	13
124	Ultralow Loading (Singleâ€Atom and Clusters) of the Pt Catalyst by Atomic Layer Deposition Using Dimethyl ((3,4â€î) <i>N</i> , <i>N</i> à€dimethylâ€3â€buteneâ€1â€amineâ€ <i>N</i>) Platinum (DDAP) on the Highâ€Surfaceâ€Area Substrate for Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2021, 8, 2001508.	3.7	13
125	Silver Nanoparticle Decorated on Reduced Graphene Oxide-Wrapped Manganese Oxide Nanorods as Electrode Materials for High-Performance Electrochemical Devices. Crystals, 2022, 12, 389.	2.2	13
126	DC electrical conductivity retention and electrical compensation of polyaniline by TiO2 at higher loading percentages in polyaniline@TiO2 nanocomposites. Electronic Materials Letters, 2015, 11, 559-564.	2.2	11

#	Article	IF	CITATIONS
127	Synergistic Effect of Polyaniline Modified Silica Gel for Highly Efficient Separation of Non Resolvable Amino Acids. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 277-281.	3.4	10
128	Linear /nonlinear optical susceptibility spectroscopic constants of polyaniline@graphene oxide nanocomposite thin films. Synthetic Metals, 2019, 251, 30-39.	3.9	10
129	Large spin-dependent tunneling magnetoresistance in Fe3O4/PET heterostructures developed at room temperature: A promising candidate for flexible and wearable spintronics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 265, 115033.	3.5	10
130	Development of Binder Free Interconnected 3D Flower of NiZn2O4 as an Advanced Electrode Materials for Supercapacitor Applications. Crystals, 2022, 12, 14.	2.2	10
131	Semi-Polycrystalline–Polyaniline Empowered Electrochemical Capacitor. Energies, 2022, 15, 2001.	3.1	10
132	Synergistic performance of <scp> Fe ₃ O ₄ </scp> / <scp> SnO ₂ </scp> / <scp> rGO</scp> nanocomposite for supercapacitor and visible lightâ€responsive photocatalysis. International Journal of Energy Research, 2022, 46, 6517-6528.	4.5	10
133	Progress in Fe3O4-centered spintronic systems: Development, architecture, and features. Applied Materials Today, 2021, 25, 101181.	4.3	9
134	Influence of ammonolysis, Cu-incorporation and film thickness on structure, optical and photocatalytic properties of Ta2O5 thin films fabricated via sol–gel: a comparative study. Journal of Materials Science: Materials in Electronics, 2017, 28, 6812-6822.	2.2	8
135	DC electrical conductivity retention and antibacterial aspects of microwave-assisted ultrathin CuO@polyaniline composite. Chemical Papers, 2020, 74, 3887-3898.	2.2	8
136	Green synthesis, characterization, application and functionality of nitrogen-doped MgO/graphene nanocomposite. Environmental Science and Pollution Research, 2021, 28, 28014-28023.	5.3	8
137	Graphitic‑carbon nitride based mixed-phase bismuth nanostructures: Tuned optical and structural properties with boosted photocatalytic performance for wastewater decontamination under visible-light irradiation. NanoImpact, 2021, 23, 100345.	4.5	8
138	Concentration Dependent Improved Spectroscopic Characteristics and Near White Light Emission in Boro Phosphate Glasses Doped with Holmium. Applied Sciences (Switzerland), 2022, 12, 2632.	2.5	8
139	Nanocarbon aerogel composites. , 2019, , 1-26.		7
140	DC electrical conductivity retention and acetone/acetaldehyde sensing on polythiophene/molybdenum disulphide composites. Polymers and Polymer Composites, 2021, 29, S422-S431.	1.9	7
141	Direct current deposited NiO on polyaniline@MoS2 flexible thin film for highly efficient solar light mineralization of 2-chlorophenol: A mechanistic analysis. Journal of the Taiwan Institute of Chemical Engineers, 2021, 129, 370-380.	5.3	4
142	Conducting Polymer Nanocomposites as Gas Sensors. Polymers and Polymeric Composites, 2019, , 911-940.	0.6	3
143	Freestanding Activated Carbon Nanocomposite Electrodes for Capacitive Deionization of Water. Polymers, 2022, 14, 2891.	4.5	3
144	Effect of polyaniline concentration on the photoconversion efficiency of nano-TiO2 based dye sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 3210-3216.	2.2	2

#	Article	IF	CITATIONS
145	Fabrication of graphene oxide and hyperbranched polyurethane composite via <i>in situ</i> polymerization with improved mechanical and dielectric properties. Polymer Composites, 2018, 39, 2765-2770.	4.6	2
146	Graphene-based material for self-healing: mechanism, synthesis, characteristics, and applications. , 2020, , 163-175.		2
147	Ternary nanocomposites for supercapattery. , 2021, , 141-173.		2
148	Comparing and Contrasting MERS, SARS-CoV, and SARS-CoV-2: Prevention, Transmission, Management, and Vaccine Development. Pathogens, 2020, 9, 985.	2.8	1
149	Aerogels in photocatalysis. , 2021, , 87-108.		1
150	Graphene Based Composites of Metals/Metal Oxides as Photocatalysts. , 2020, , 329-337.		1