
Duncan J Quincey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6033715/publications.pdf Version: 2024-02-01

DUNCAN LOUINCEY

#	Article	IF	CITATIONS
1	Manifestations and mechanisms of the Karakoram glacier Anomaly. Nature Geoscience, 2020, 13, 8-16.	12.9	186
2	Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya. Earth and Planetary Science Letters, 2015, 430, 427-438.	4.4	158
3	Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal. Quaternary Science Reviews, 2008, 27, 2361-2389.	3.0	146
4	The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sensing of Environment, 2007, 111, 172-181.	11.0	129
5	Pervasive Rise of Small-scale Deforestation in Amazonia. Scientific Reports, 2018, 8, 1600.	3.3	127
6	Heterogeneity in Karakoram glacier surges. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1288-1300.	2.8	119
7	Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015. Cryosphere, 2017, 11, 407-426.	3.9	100
8	The dynamics of supraglacial ponds in the Everest region, central Himalaya. Global and Planetary Change, 2016, 142, 14-27.	3.5	92
9	Optimising NDWI supraglacial pond classification on Himalayan debris-covered glaciers. Remote Sensing of Environment, 2018, 217, 414-425.	11.0	53
10	Quantifying ice cliff evolution with multi-temporal point clouds on the debris-covered Khumbu Glacier, Nepal. Journal of Glaciology, 2017, 63, 823-837.	2.2	48
11	Ice cliff dynamics in the Everest region of the Central Himalaya. Geomorphology, 2017, 278, 238-251.	2.6	48
12	An integrated Structure-from-Motion and time-lapse technique for quantifying ice-margin dynamics. Journal of Glaciology, 2017, 63, 937-949.	2.2	47
13	Ice flow dynamics and surface meltwater flux at a land-terminating sector of the Greenland ice sheet. Journal of Glaciology, 2013, 59, 687-696.	2.2	46
14	Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest region, Nepal Himalaya. Cryosphere, 2018, 12, 3891-3905.	3.9	46
15	Accelerated mass loss of Himalayan glaciers since the Little Ice Age. Scientific Reports, 2021, 11, 24284.	3.3	45
16	Characterizing the behaviour of surge- and non-surge-type glaciers in the Kingata Mountains, eastern Pamir, from 1999 to 2016. Cryosphere, 2019, 13, 219-236.	3.9	43
17	Temporal variations in supraglacial debris distribution on Baltoro Glacier, Karakoram between 2001 and 2012. Geomorphology, 2017, 295, 572-585.	2.6	40
18	Developments in budget remote sensing for the geosciences. Geology Today, 2013, 29, 138-143.	0.9	38

DUNCAN J QUINCEY

#	Article	IF	CITATIONS
19	Aerodynamic roughness of glacial ice surfaces derived from highâ€resolution topographic data. Journal of Geophysical Research F: Earth Surface, 2016, 121, 748-766.	2.8	37
20	Hydrology of debris-covered glaciers in High Mountain Asia. Earth-Science Reviews, 2020, 207, 103212.	9.1	37
21	A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach. Cryosphere, 2022, 16, 603-623.	3.9	31
22	Supraglacial Ponds Regulate Runoff From Himalayan Debris overed Glaciers. Geophysical Research Letters, 2017, 44, 11,894.	4.0	30
23	Polythermal structure of a Himalayan debris-covered glacier revealed by borehole thermometry. Scientific Reports, 2018, 8, 16825.	3.3	29
24	Heterogeneous water storage and thermal regime of supraglacial ponds on debris overed glaciers. Earth Surface Processes and Landforms, 2018, 43, 229-241.	2.5	27
25	Surface and subsurface hydrology of debris-covered Khumbu Glacier, Nepal, revealed by dye tracing. Earth and Planetary Science Letters, 2019, 513, 176-186.	4.4	26
26	Accelerated Volume Loss in Glacier Ablation Zones of NE Greenland, Little Ice Age to Present. Geophysical Research Letters, 2019, 46, 1476-1484.	4.0	24
27	Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal. Quaternary Science Reviews, 2009, 28, 1084.	3.0	19
28	Remote sensing of the mountain cryosphere: Current capabilities and future opportunities for research. Progress in Physical Geography, 2021, 45, 931-964.	3.2	18
29	Evaluating morphological estimates of the aerodynamic roughness of debris covered glacier ice. Earth Surface Processes and Landforms, 2017, 42, 2541-2553.	2.5	17
30	Morphometric evolution of Everest region debris-covered glaciers. Geomorphology, 2020, 371, 107422.	2.6	17
31	The sustainability of water resources in High Mountain Asia in the context of recent and future glacier change. Geological Society Special Publication, 2018, 462, 189-204.	1.3	16
32	Calving Seasonality Associated With Meltâ€Undercutting and Lake Ice Cover. Geophysical Research Letters, 2020, 47, e2019GL086561.	4.0	15
33	The Role of Differential Ablation and Dynamic Detachment in Driving Accelerating Mass Loss From a Debrisâ€Covered Himalayan Glacier. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005761.	2.8	15
34	Automatic Classification of Roof Objects From Aerial Imagery of Informal Settlements in Johannesburg. Applied Spatial Analysis and Policy, 2016, 9, 269-281.	2.0	14
35	Continuous borehole optical televiewing reveals variable englacial debris concentrations at Khumbu Glacier, Nepal. Communications Earth & Environment, 2021, 2, .	6.8	14
36	Seasonally stable temperature gradients through supraglacial debris in the Everest region of Nepal, Central Himalaya. Journal of Glaciology, 2021, 67, 170-181.	2.2	14

DUNCAN J QUINCEY

#	Article	IF	CITATIONS
37	The changing water cycle: the need for an integrated assessment of the resilience to changes in water supply in Highâ€Mountain Asia. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1258.	6.5	12
38	A Conceptual Design of Spatio-Temporal Agent-Based Model for Volcanic Evacuation. Systems, 2017, 5, 53.	2.3	11
39	The Energy and Mass Balance of Peruvian Glaciers. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034911.	3.3	11
40	Geomorphology of the Rees Valley, Otago, New Zealand. Journal of Maps, 2014, 10, 136-150.	2.0	10
41	lceâ€margin and meltwater dynamics during the midâ€Holocene in the Kangerlussuaq area of west Greenland. Boreas, 2017, 46, 369-387.	2.4	10
42	Projected increases in surface melt and ice loss for the Northern and Southern Patagonian Icefields. Scientific Reports, 2021, 11, 16847.	3.3	10
43	High concentrations of pharmaceuticals emerging as a threat to Himalayan water sustainability. Environmental Science and Pollution Research, 2022, 29, 16749-16757.	5.3	10
44	Examining geodetic glacier mass balance in the eastern Pamir transition zone. Journal of Glaciology, 2020, 66, 927-937.	2.2	9
45	Glacial Aerodynamic Roughness Estimates: Uncertainty, Sensitivity, and Precision in Field Measurements. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005167.	2.8	9
46	Iceâ€Marginal Proglacial Lakes Across Greenland: Present Status and a Possible Future. Geophysical Research Letters, 2022, 49, .	4.0	9
47	The structural glaciology of southwest Antarctic Peninsula Ice Shelves (ca. 2010). Journal of Maps, 2013, 9, 523-531.	2.0	7
48	Variations in nearâ€surface debris temperature through the summer monsoon on Khumbu Glacier, Nepal Himalaya. Earth Surface Processes and Landforms, 2018, 43, 2698-2714.	2.5	7
49	An Agent-Based Evaluation of Varying Evacuation Scenarios in Merapi: Simultaneous and Staged. Geosciences (Switzerland), 2019, 9, 317.	2.2	7
50	Instruments and methods: hot-water borehole drilling at a high-elevation debris-covered glacier. Journal of Glaciology, 2019, 65, 822-832.	2.2	7
51	A scale-dependent model to represent changing aerodynamic roughness of ablating glacier ice based on repeat topographic surveys. Journal of Glaciology, 2020, 66, 950-964. The Himalayan Climate and Water Atlas The Himalayan Climate and Water Atlas Edited by Arun	2.2	7
52	Bhakta Shrestha, Nand Kishor Agrawal, BjĶrn Alfthan, Sagar Ratna Bajracharya, Judith Maréchal, and Bob van Oort. Kathmandu, Nepal, Arendal, Norway, and Oslo, Norway: International Centre for Integrated Mountain Development (ICIMOD), GRID-Arendal, and Centre for International Climate and Environmental Research - Oslo (CICERO), 2015. 96 pp. Paperback: Available on request, ISBN	1.0	4
53	978-92-9115-356-5. E-book: Free down. Mountain Research and Development, 2017, 37, 155-156. Correcting for Systematic Underestimation of Topographic Glacier Aerodynamic Roughness Values From Hintereisferner, Austria. Frontiers in Earth Science, 2021, 9, .	1.8	3
54	Stable isotope (δD‴´Î´18O) relationships of ice facies and glaciological structures within the mid-latitude maritime Fox Glacier, New Zealand. Annals of Glaciology, 2017, 58, 155-165.	1.4	2

DUNCAN J QUINCEY

#	Article	lF	CITATIONS
55	Surface ablation and its drivers along a west–east transect of the Southern Patagonia Icefield. Journal of Glaciology, 2022, 68, 305-318.	2.2	2
56	Changes in ice-surface debris, surface elevation and mass through the active phase of selected Karakoram glacier surges. Geomorphology, 2022, 410, 108291.	2.6	2
57	Robson, Benjamin Aubrey, 2016. The Application of Remote Sensing Techniques for the Quantification and Change Assessment of Debris-covered Glaciers. Norsk Geografisk Tidsskrift, 2017, 71, 62-63.	0.7	1
58	Seasonal Cold-Wave Propagation Into the Near-Surface Ice of Debris-Covered Khumbu Glacier, Nepal. Frontiers in Earth Science, 2021, 9, .	1.8	1