List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/603324/publications.pdf Version: 2024-02-01

Ιμεκικό Χυ

#	Article	IF	CITATIONS
1	Anterolateral Structure Reconstruction Similarly Improves the Stability and Causes Less Overconstraint in Anterior Cruciate Ligament-Reconstructed Knees Compared With Modified Lemaire Lateral Extra-articular Tenodesis: A Biomechanical Study. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2022, 38, 911-924.	2.7	18
2	The Long-term Chondroprotective Effect of Meniscal Allograft Transplant: A 10- to 14-Year Follow-up Study. American Journal of Sports Medicine, 2022, 50, 128-137.	4.2	27
3	Study on feasibility of the partial meniscal allograft transplantation. Clinical and Translational Medicine, 2022, 12, e701.	4.0	2
4	Physical therapy and orthopaedic equipment-induced reduction in the biomechanical risk factors related to knee osteoarthritis: a systematic review and Bayesian network meta-analysis of randomised controlled trials. BMJ Open, 2022, 12, e051608.	1.9	7
5	Double-Bundle Versus Single-Bundle Anterior Cruciate Ligament Reconstruction in Patients With Significant Passive Anterior Tibial Subluxation. American Journal of Sports Medicine, 2022, 50, 943-950.	4.2	6
6	The immediate meniscal allograft transplantation achieved better chondroprotection and less meniscus degeneration than the conventional delayed transplantation in the long-term. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30, 3708-3717.	4.2	5
7	Higher pathologic threshold of increased tibial tuberosity–trochlear groove distance should be considered for taller patients. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30, 3760-3766.	4.2	5
8	Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors. Chemical Engineering Journal, 2021, 403, 126431.	12.7	215
9	MicroRNA-210-3p Promotes Chondrogenic Differentiation and Inhibits Adipogenic Differentiation Correlated with HIF-3α Signalling in Bone Marrow Mesenchymal Stem Cells. BioMed Research International, 2021, 2021, 1-8.	1.9	6
10	Principles for establishment of the stem cell bank and its applications on management of sports injuries. Stem Cell Research and Therapy, 2021, 12, 307.	5.5	3
11	Tibial Tubercle Osteotomy May Not Provide Additional Benefit in Treating Patellar Dislocation With Increased Tibial Tuberosity–Trochlear Groove Distance: A Systematic Review. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2021, 37, 1670-1679.e1.	2.7	15
12	Fabrication of 3D-Printed Interpenetrating Hydrogel Scaffolds for Promoting Chondrogenic Differentiation. Polymers, 2021, 13, 2146.	4.5	12
13	Using Anatomic Landmarks to Locate Schöttle's Point Was Accurate Without Fluoroscopy During Medial Patellofemoral Ligament Reconstruction. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2021, 37, 1902-1908.	2.7	12
14	Prognostic Factors to Determine Survivorship of Meniscal Allograft Transplant: A Systematic Review. Orthopaedic Journal of Sports Medicine, 2021, 9, 232596712110072.	1.7	8
15	Fabrication of Injectable Chitosan-Chondroitin Sulfate Hydrogel Embedding Kartogenin-Loaded Microspheres as an Ultrasound-Triggered Drug Delivery System for Cartilage Tissue Engineering. Pharmaceutics, 2021, 13, 1487.	4.5	34
16	Scaffold-Based Tissue Engineering Strategies for Osteochondral Repair. Frontiers in Bioengineering and Biotechnology, 2021, 9, 812383.	4.1	25
17	Function and Mechanism of RGD in Bone and Cartilage Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 773636.	4.1	36
18	Advances in the Application of Supramolecular Hydrogels for Stem Cell Delivery and Cartilage Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 847.	4.1	27

#	Article	IF	CITATIONS
19	Discovery of Selenocysteine as aÂPotential Nanomedicine Promotes Cartilage Regeneration With Enhanced Immune Response by Text Mining and Biomedical Databases. Frontiers in Pharmacology, 2020, 11, 1138.	3.5	5
20	Risk Factors for Osteochondral Lesions and Osteophytes in Chronic Lateral Ankle Instability: A Case Series of 1169 Patients. Orthopaedic Journal of Sports Medicine, 2020, 8, 232596712092282.	1.7	19
21	The Higher Inherent Therapeutic Potential of Biomaterial-Based hDPSCs and hEnSCs for Pancreas Diseases. Frontiers in Bioengineering and Biotechnology, 2020, 8, 636.	4.1	4
22	Facile Strategy on Hydrophilic Modification of Poly(ε-caprolactone) Scaffolds for Assisting Tissue-Engineered Meniscus Constructs In Vitro. Frontiers in Pharmacology, 2020, 11, 471.	3.5	26
23	Advances of Stem Cell-Laden Hydrogels With Biomimetic Microenvironment for Osteochondral Repair. Frontiers in Bioengineering and Biotechnology, 2020, 8, 247.	4.1	33
24	The Use of Peripheral Blood-Derived Stem Cells for Cartilage Repair and Regeneration In Vivo: A Review. Frontiers in Pharmacology, 2020, 11, 404.	3.5	25
25	Biomimetic Nanosilica–Collagen Scaffolds for In Situ Bone Regeneration: Toward a Cellâ€Free, Oneâ€Step Surgery. Advanced Materials, 2019, 31, e1904341.	21.0	134
26	Quadriceps-sparing versus traditional medial parapatellar approaches for total knee arthroplasty: a meta-analysis. BMC Musculoskeletal Disorders, 2019, 20, 117.	1.9	7
27	Orchestrated biomechanical, structural, and biochemical stimuli for engineering anisotropic meniscus. Science Translational Medicine, 2019, 11, .	12.4	79
28	Low-Molecular-Weight Heparin-Functionalized Chitosan-Chondroitin Sulfate Hydrogels for Controlled Release of TGF-l²3 and in vitro Neocartilage Formation. Frontiers in Chemistry, 2019, 7, 745.	3.6	25
29	Scaffold-Based Gene Therapeutics for Osteochondral Tissue Engineering. Frontiers in Pharmacology, 2019, 10, 1534.	3.5	25
30	The Radiated Deep-frozen Xenogenic Meniscal Tissue Regenerated the Total Meniscus with Chondroprotection. Scientific Reports, 2018, 8, 9041.	3.3	8
31	3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model. American Journal of Sports Medicine, 2017, 45, 1497-1511.	4.2	118
32	Three-Dimensional Printing Technology Combined with Materials Drives Meniscal and Cartilaginous Regeneration. ACS Symposium Series, 2017, , 253-272.	0.5	0
33	3D- Printed Poly(ε-caprolactone) Scaffold Integrated with Cell-laden Chitosan Hydrogels for Bone Tissue Engineering. Scientific Reports, 2017, 7, 13412.	3.3	203
34	Risk of total/subtotal meniscectomy for respective medial and lateral meniscus injury: correlation with tear type, duration of complaint, age, gender and ACL rupture in 6034 Asian patients. BMC Surgery, 2017, 17, 127.	1.3	15
35	Malalignment and malposition of quadriceps-sparing approach in primary total knee arthroplasty: a systematic review and meta-analysis. Journal of Orthopaedic Surgery and Research, 2017, 12, 129.	2.3	10
36	Does Quadriceps-sparing Total Knee Arthroplasty Increase the Risk of Lower Limb and Component Malalignment? A Minimum 5-year Follow-up Study. Chinese Medical Journal, 2016, 129, 92-94.	2.3	3

#	Article	IF	CITATIONS
37	Thermogel-Coated Poly(ε-Caprolactone) Composite Scaffold for Enhanced Cartilage Tissue Engineering. Polymers, 2016, 8, 200.	4.5	42
38	Chondrogenic Potential of Peripheral Blood Derived Mesenchymal Stem Cells Seeded on Demineralized Cancellous Bone Scaffolds. Scientific Reports, 2016, 6, 36400.	3.3	23
39	Role of scaffold mean pore size in meniscus regeneration. Acta Biomaterialia, 2016, 43, 314-326.	8.3	119
40	The Chondrogenic Potential of Progenitor Cells Derived from Peripheral Blood: A Systematic Review. Stem Cells and Development, 2016, 25, 1195-1207.	2.1	15
41	Novel customized template designing for patellar resurfacing in total knee arthroplasty. Journal of Orthopaedic Research, 2016, 34, 1798-1803.	2.3	11
42	Intraoperative anthropomorphic study of anterior femoral condyles compared with sizing of femoral arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 2016, 24, 1280-1285.	4.2	2
43	A systematic review of double-bundle versus single-bundle posterior cruciate ligament reconstruction. BMC Musculoskeletal Disorders, 2016, 17, 45.	1.9	35
44	Personalized femoral component design and its direct manufacturing by selective laser melting. Rapid Prototyping Journal, 2016, 22, 330-337.	3.2	13
45	Optimal patellar alignment with minimally invasive approaches in total knee arthroplasty after a minimum five year follow-up. International Orthopaedics, 2016, 40, 487-492.	1.9	16
46	Are There Any Clinical and Radiographic Differences Between Quadriceps-sparing and Mini-medial Parapatellar Approaches in Total Knee Arthroplasty After a Minimum 5 Years of Follow-up?. Chinese Medical Journal, 2015, 128, 1898-1904.	2.3	6
47	Immediate Versus Delayed Meniscus Allograft Transplantation: Response. American Journal of Sports Medicine, 2015, 43, NP9-NP10.	4.2	3
48	Comprehensive assessment of patellar morphology using computed tomography-based three-dimensional computer models. Knee, 2015, 22, 475-480.	1.6	14
49	Potential of Centrifugal Seeding Method in Improving Cells Distribution and Proliferation on Demineralized Cancellous Bone Scaffolds for Tissue-Engineered Meniscus. ACS Applied Materials & Interfaces, 2015, 7, 15294-15302.	8.0	28
50	Immediate Versus Delayed Meniscus Allograft Transplantation: Response to Later Reply. American Journal of Sports Medicine, 2015, 43, NP11-NP12.	4.2	0
51	Scaffolds drive meniscus tissue engineering. RSC Advances, 2015, 5, 77851-77859.	3.6	25
52	Study on manufacturing of W-Cu alloy thin wall parts by selective laser melting. International Journal of Advanced Manufacturing Technology, 2015, 78, 885-893.	3.0	43
53	Comparative Study of Sex Differences in Distal Femur Morphology in Osteoarthritic Knees in a Chinese Population. PLoS ONE, 2014, 9, e89394.	2.5	22
54	Intraoperative anthropometric measurements of tibial morphology: comparisons with the dimensions of current tibial implants. Knee Surgery, Sports Traumatology, Arthroscopy, 2014, 22, 2924-2930.	4.2	24

#	Article	lF	CITATIONS
55	A New Source of Mesenchymal Stem Cells for Articular Cartilage Repair. American Journal of Sports Medicine, 2014, 42, 592-601.	4.2	92
56	Comparative Study on Immediate Versus Delayed Meniscus Allograft Transplantation. American Journal of Sports Medicine, 2014, 42, 2329-2337.	4.2	42
57	Repair of large full-thickness cartilage defect by activating endogenous peripheral blood stem cells and autologous periosteum flap transplantation combined with patellofemoral realignment. Knee, 2014, 21, 609-612.	1.6	35
58	Clinical features and prognosis of discoid medial meniscus. Knee Surgery, Sports Traumatology, Arthroscopy, 2013, 21, 398-402.	4.2	20
59	Computed Tomography Morphometric Study of Gender Differences in Osteoarthritis Proximal Tibias. Journal of Arthroplasty, 2013, 28, 1117-1120.	3.1	14
60	Double-Bundle Anterior Cruciate Ligament Reconstruction Using Bone–Patellar Tendon–Bone Allograft. American Journal of Sports Medicine, 2012, 40, 1084-1092.	4.2	14
61	Comparative Study of the Biological Characteristics of Mesenchymal Stem Cells from Bone Marrow and Peripheral Blood of Rats. Tissue Engineering - Part A, 2012, 18, 1793-1803.	3.1	37
62	Meniscus Transplantation Using Treated Xenogeneic Meniscal Tissue: Viability and Chondroprotection Study in Rabbits. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2012, 28, 1147-1159.	2.7	30
63	Computed Tomographic Measurement of Gender Differences in Bowing of the Sagittal Femoral Shaft in Persons Older Than 50 Years. Journal of Arthroplasty, 2012, 27, 1216-1220.	3.1	20
64	The Position of the Posterolateral Bundle Femoral Tunnel During Arthroscopic Double-Bundle Anterior Cruciate Ligament Reconstruction: A Cadaveric Study. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2011, 27, 959-964.	2.7	7
65	Paper # 19: The Relationship Between the Different Femoral Tunnel Techniques and the Second-look Arthroscopy Results in Double-Bundle ACL Reconstructions. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2011, 27, e83-e84.	2.7	0
66	Diagnostic Values of 3 Methods for Evaluating Meniscal Healing Status After Meniscal Repair. American Journal of Sports Medicine, 2011, 39, 735-742.	4.2	75
67	Proliferation and apoptosis property of mesenchymal stem cells derived from peripheral blood under the culture conditions of hypoxia and serum deprivation. Chinese Medical Journal, 2011, 124, 3959-67.	2.3	14
68	Protective Effect of Sinomenine on Cartilage Degradation and Chondrocytes Apoptosis. Yakugaku Zasshi, 2010, 130, 1053-1060.	0.2	28
69	The protective effect of tetramethylpyrazine on cartilage explants and chondrocytes. Journal of Ethnopharmacology, 2010, 132, 414-420.	4.1	35
70	MRI signal changes in completely healed meniscus confirmed by second-look arthroscopy after meniscal repair with bioabsorbable arrows. Knee Surgery, Sports Traumatology, Arthroscopy, 2009, 17, 622-630.	4.2	27
71	Three Dimensional Assessment of Knee Cartilage in Cadavers with High Resolution MR-Arthrography and MSCT-Arthrography. Academic Radiology, 2009, 16, 1049-1055.	2.5	11
72	Comparative study on early period of recovery between minimally invasive surgery total knee arthroplasty and minimally invasive surgery-quadriceps sparing total knee arthroplasty in Chinese patients. Chinese Medical Journal, 2008, 121, 1353-1357.	2.3	7

#