
Li Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6033160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PtCu@Ir-PCN-222: Synergistic Catalysis of Bimetallic PtCu Nanowires in Hydrosilane-Concentrated Interspaces of an Iridium(III)–Porphyrin-Based Metal–Organic Framework. ACS Catalysis, 2022, 12, 3604-3614.	11.2	22
2	Ultrathin Twoâ€Dimensional Metal–Organic Framework Nanosheets Based on a Halogenâ€Substituted Porphyrin Ligand: Synthesis and Catalytic Application in CO ₂ Reductive Amination. Chemistry - A European Journal, 2022, 28, .	3.3	11
3	Design catalytic space engineering of Ag-Ag bond-based metal organic framework for carbon dioxide fixation reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125529.	4.7	10
4	Applications of metal–organic framework composites in CO2 capture and conversion. Chinese Chemical Letters, 2021, 32, 649-659.	9.0	60
5	Zinc–BrÃ,nsted acid mediated practical hydrotrifluoromethylation of alkenes with CF ₃ Br. Organic Chemistry Frontiers, 2021, 8, 6356-6363.	4.5	13
6	Engineering Porphyrin Metal–Organic Framework Composites as Multifunctional Platforms for CO ₂ Adsorption and Activation. Journal of the American Chemical Society, 2020, 142, 14548-14556.	13.7	54
7	1,4-Addition of <i>o</i> -naphthoquinone methides induced by silver-catalyzed cyclization of enynones: an approach to unsymmetrical triarylmethanes and benzo[<i>f</i>]chromenes. Organic Chemistry Frontiers, 2020, 7, 3387-3392.	4.5	8
8	Porphyrinic Metalâ€Organic Frameworks Derived Carbonâ€Based Nanomaterials for Hydrogen Evolution Reaction. ChemistrySelect, 2020, 5, 10988-10995.	1.5	5
9	A Porous and Stable Porphyrin Metalâ€Organic Framework as an Efficient Catalyst towards Visibleâ€Lightâ€Mediated Aerobic Crossâ€Dehydrogenativeâ€Coupling Reactions. Chemistry - an Asian Journal, 2020, 15, 1118-1124.	3.3	15
10	A series of highly stable porphyrinic metal–organic frameworks based on iron–oxo chain clusters: design, synthesis and biomimetic catalysis. Journal of Materials Chemistry A, 2020, 8, 8376-8382.	10.3	26
11	Porphyrin Metal–Organic Frameworks in Heterogeneous Supramolecular Catalysis. Series on Chemistry, Energy and the Environment, 2020, , 225-265.	0.3	2
12	Well-distributed Pt-nanoparticles within confined coordination interspaces of self-sensitized porphyrin metal–organic frameworks: synergistic effect boosting highly efficient photocatalytic hydrogen evolution reaction. Chemical Science, 2019, 10, 10577-10585.	7.4	87
13	Application of Metal–Organic Frameworks in CO2 Capture and Conversion. RSC Catalysis Series, 2019, , 455-478.	0.1	1
14	Applications of Porphyrin Metal-Organic Frameworks in CO ₂ Capture and Conversion. Acta Chimica Sinica, 2019, 77, 242.	1.4	15
15	A porous rhodium(III)-porphyrin metal-organic framework as an efficient and selective photocatalyst for CO2 reduction. Applied Catalysis B: Environmental, 2018, 231, 173-181.	20.2	126
16	A new polyoxovanadate-based metal–organic framework: synthesis, structure and photo-/electro-catalytic properties. New Journal of Chemistry, 2018, 42, 7247-7253.	2.8	26
17	Carbene insertion into N–H bonds with size-selectivity induced by a microporous ruthenium–porphyrin metal–organic framework. Dalton Transactions, 2018, 47, 3940-3946.	3.3	21
18	Catalytic Space Engineering of Porphyrin Metal–Organic Frameworks for Combined CO ₂ Capture and Conversion at a Low Concentration. ChemSusChem, 2018, 11, 2340-2347.	6.8	48

LI ZHANG

#	Article	IF	CITATIONS
19	A porous metal–organic aerogel based on dirhodium paddle-wheels as an efficient and stable heterogeneous catalyst towards the reduction reaction of aldehydes and ketones. New Journal of Chemistry, 2018, 42, 11358-11363.	2.8	12
20	An Acid Stable Metalâ€Organic Framework as an Efficient and Recyclable Catalyst for the Oâ^'H Insertion Reaction of Carboxylic Acids. ChemCatChem, 2018, 10, 3901-3906.	3.7	17
21	Applications of metal-organic frameworks in photocatalysis. Chinese Science Bulletin, 2018, 63, 248-265.	0.7	10
22	Porphyrinic Metal-Organic Frameworks As Chemoselective Catalysts. ECS Meeting Abstracts, 2018, , .	0.0	0
23	Porphyrinic Metal-Organic Frameworks for CO2 Capture and Conversion. ECS Meeting Abstracts, 2018, , .	0.0	0
24	N—H Insertion Reactions Catalyzed by a Dirhodium Metalâ€Organic Cage: A Facile and Recyclable Approach for C—N Bond Formation. Chinese Journal of Chemistry, 2017, 35, 964-968.	4.9	10
25	Engineering catalytic coordination space in a chemically stable Ir-porphyrin MOF with a confinement effect inverting conventional Si–H insertion chemoselectivity. Chemical Science, 2017, 8, 775-780.	7.4	82
26	Enantioselective Intramolecular Câ^'H Insertion of Donor and Donor/Donor Carbenes by a Nondiazo Approach. Angewandte Chemie, 2016, 128, 8592-8596.	2.0	29
27	Enantioselective Intramolecular Câ^'H Insertion of Donor and Donor/Donor Carbenes by a Nondiazo Approach. Angewandte Chemie - International Edition, 2016, 55, 8452-8456.	13.8	130
28	Metal–organic aerogels based on dinuclear rhodium paddle-wheel units: design, synthesis and catalysis. Inorganic Chemistry Frontiers, 2016, 3, 702-710.	6.0	30
29	A stable and porous iridium(<scp>iii</scp>)-porphyrin metal–organic framework: synthesis, structure and catalysis. CrystEngComm, 2016, 18, 2203-2209.	2.6	63
30	Dual Catalysis: Proton/Metal-Catalyzed Tandem Benzofuran Annulation/Carbene Transfer Reaction. Organic Letters, 2016, 18, 1322-1325.	4.6	82
31	Enynal/Enynone: A Safe and Practical Carbenoid Precursor. Current Organic Chemistry, 2015, 20, 102-118.	1.6	71
32	Chiral dirhodium catalysts derived from <scp>l</scp> -serine, <scp>l</scp> -threonine and <scp>l</scp> -cysteine: design, synthesis and application. Organic Chemistry Frontiers, 2015, 2, 890-907.	4.5	15
33	A new self-penetrating amine-decorated microporous metal–organic framework: Crystal structure, adsorption selectivity, and luminescence properties. Inorganic Chemistry Communication, 2015, 54, 77-80.	3.9	6
34	A porous metal–organic cage constructed from dirhodium paddle-wheels: synthesis, structure and catalysis. Journal of Materials Chemistry A, 2015, 3, 20201-20209.	10.3	51
35	Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews, 2014, 43, 6011-6061.	38.1	2,540
36	Porous Metal–Organic Framework Catalyzing the Three-Component Coupling of Sulfonyl Azide, Alkyne, and Amine. Inorganic Chemistry, 2013, 52, 9053-9059.	4.0	62

LI ZHANG

#	Article	IF	CITATIONS
37	From Homogeneous to Heterogeneous Catalysis of the Three omponent Coupling of Oxysulfonyl Azides, Alkynes, and Amines. ChemCatChem, 2013, 5, 3131-3138.	3.7	27
38	Two Zn ^{II} Metalâ€Organic Frameworks with Coordinatively Unsaturated Metal Sites: Structures, Adsorption, and Catalysis. Chemistry - an Asian Journal, 2012, 7, 2796-2804.	3.3	107
39	Two ligand-functionalized Pb(ii) metal–organic frameworks: structures and catalytic performances. Dalton Transactions, 2012, 41, 10422.	3.3	82
40	Rhodium-Catalyzed Enantioselective Cyclopropanation of Olefins with <i>N</i> -Sulfonyl 1,2,3-Triazoles. Journal of the American Chemical Society, 2009, 131, 18034-18035.	13.7	288