Kathryn Volkening

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6033071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence of synergism among three genetic variants in a patient with LMNA-related lipodystrophy and amyotrophic lateral sclerosis leading to a remarkable nuclear phenotype. Molecular and Cellular Biochemistry, 2021, 476, 2633-2650.	1.4	4
2	Neurofilament Immunohistochemistry Followed by Luxol Fast Blue, for Staining Axons and Myelin in the Same Paraffin Section of Spinal Cord. Applied Immunohistochemistry and Molecular Morphology, 2020, 28, 562-565.	0.6	5
3	Tau protein phosphorylation at Thr ¹⁷⁵ initiates fibril formation via accessibility of the Nâ€terminal phosphataseâ€activating domain. Journal of Neurochemistry, 2020, 155, 313-326.	2.1	7
4	Alterations in Tau Metabolism in ALS and ALS-FTSD. Frontiers in Neurology, 2020, 11, 598907.	1.1	18
5	Inclusion Formation and Toxicity of the ALS Protein RGNEF and Its Association with the Microtubule Network. International Journal of Molecular Sciences, 2020, 21, 5597.	1.8	9
6	Synergistic toxicity in an in vivo model of neurodegeneration through the co-expression of human TDP-43M337V and tauT175D protein. Acta Neuropathologica Communications, 2019, 7, 170.	2.4	9
7	A novel overlapping NLS/NES region within the PH domain of Rho Guanine Nucleotide Exchange Factor (RCNEF) regulates its nuclear-cytoplasmic localization. European Journal of Cell Biology, 2019, 98, 27-35.	1.6	7
8	TDP-43 regulates the alternative splicing of hnRNP A1 to yield an aggregation-prone variant in amyotrophic lateral sclerosis. Brain, 2018, 141, 1320-1333.	3.7	106
9	Reply: TDP-43 mutations increase HNRNP A1-7B through gain of splicing function. Brain, 2018, 141, e84-e84.	3.7	Ο
10	Somatic Gene Transfer Using a Recombinant Adenoviral Vector (rAAV9) Encoding Pseudophosphorylated Human Thr175 Tau in Adult Rat Hippocampus Induces Tau Pathology. Journal of Neuropathology and Experimental Neurology, 2018, 77, 685-695.	0.9	4
11	Rho guanine nucleotide exchange factor (RGNEF) is a prosurvival factor under stress conditions. Molecular and Cellular Neurosciences, 2017, 82, 88-95.	1.0	11
12	C9 <i>orf</i> 72 mutations do not influence the tau signature of amyotrophic lateral sclerosis with cognitive impairment (ALSci). Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 549-554.	1.1	2
13	Thr175-phosphorylated tau induces pathologic fibril formation via GSK3β-mediated phosphorylation of Thr231 inÂvitro. Neurobiology of Aging, 2015, 36, 1590-1599.	1.5	32
14	The emerging role of guanine nucleotide exchange factors in ALS and other neurodegenerative diseases. Frontiers in Cellular Neuroscience, 2014, 8, 282.	1.8	25
15	Comprehensive Luciferase-Based Reporter Gene Assay Reveals Previously Masked Up-Regulatory Effects of miRNAs. International Journal of Molecular Sciences, 2014, 15, 15592-15602.	1.8	19
16	RNA metabolism in ALS: When normal processes become pathological. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 321-336.	1.1	61
17	Analysis of Novel NEFL mRNA Targeting microRNAs in Amyotrophic Lateral Sclerosis. PLoS ONE, 2014, 9, e85653.	1.1	39
18	Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels. Molecular Brain, 2013, 6, 26.	1.3	146

KATHRYN VOLKENING

#	Article	IF	CITATIONS
19	Rho guanine nucleotide exchange factor is an NFL mRNA destabilizing factor that forms cytoplasmic inclusions in amyotrophic lateral sclerosis. Neurobiology of Aging, 2013, 34, 248-262.	1.5	34
20	Detection of a novel frameshift mutation and regions with homozygosis within ARHGEF28 gene in familial amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 444-451.	1.1	31
21	Co-aggregation of RNA binding proteins in ALS spinal motor neurons: evidence of a common pathogenic mechanism. Acta Neuropathologica, 2012, 124, 733-747.	3.9	111
22	TDPâ€43 and FUS/TLS: sending a complex message about messenger RNA in amyotrophic lateral sclerosis?. FEBS Journal, 2011, 278, 3569-3577.	2.2	26
23	Human low molecular weight neurofilament (NFL) mRNA interacts with a predicted p190RhoGEF homologue (RGNEF) in humans. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 97-103.	2.3	26
24	Divergent patterns of cytosolic TDP-43 and neuronal progranulin expression following axotomy: Implications for TDP-43 in the physiological response to neuronal injury. Brain Research, 2009, 1249, 202-211.	1.1	192
25	Cytosolic TDP-43 expression following axotomy is associated with caspase 3 activation in NFLâ^'/â^' mice: Support for a role for TDP-43 in the physiological response to neuronal injury. Brain Research, 2009, 1296, 176-186.	1.1	82