
Boris Parent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6032813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drought and Abscisic Acid Effects on Aquaporin Content Translate into Changes in Hydraulic Conductivity and Leaf Growth Rate: A Trans-Scale Approach Â. Plant Physiology, 2009, 149, 2000-2012.	4.8	331
2	High-throughput shoot imaging to study drought responses. Journal of Experimental Botany, 2010, 61, 3519-3528.	4.8	313
3	Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytologist, 2012, 194, 760-774.	7.3	203
4	Genetic and Physiological Controls of Growth under Water Deficit. Plant Physiology, 2014, 164, 1628-1635.	4.8	141
5	Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects. Journal of Experimental Botany, 2010, 61, 1751-1759.	4.8	122
6	Can current crop models be used in the phenotyping era for predicting the genetic variability of yield of plants subjected to drought or high temperature?. Journal of Experimental Botany, 2014, 65, 6179-6189.	4.8	100
7	Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized. Plant, Cell and Environment, 2010, 33, 1256-1267.	5.7	94
8	Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10642-10647.	7.1	94
9	Modelling the coordination of the controls of stomatal aperture, transpiration, leaf growth, and abscisic acid: update and extension of the Tardieu–Davies model. Journal of Experimental Botany, 2015, 66, 2227-2237.	4.8	91
10	Genetic control of grain yield and grain physical characteristics in a bread wheat population grown under a range of environmental conditions. Theoretical and Applied Genetics, 2014, 127, 1607-1624.	3.6	85
11	Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat. Theoretical and Applied Genetics, 2013, 126, 747-761.	3.6	77
12	A Hydraulic Model Is Compatible with Rapid Changes in Leaf Elongation under Fluctuating Evaporative Demand and Soil Water Status Â. Plant Physiology, 2014, 164, 1718-1730.	4.8	73
13	Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat. Journal of Experimental Botany, 2015, 66, 5481-5492.	4.8	67
14	Quantifying Wheat Sensitivities to Environmental Constraints to Dissect Genotype × Environment Interactions in the Field. Plant Physiology, 2017, 174, 1669-1682.	4.8	42
15	Modification of the Expression of the Aquaporin ZmPIP2;5 Affects Water Relations and Plant Growth. Plant Physiology, 2020, 182, 2154-2165.	4.8	39
16	Predictable †metaâ€mechanisms' emerge from feedbacks between transpiration and plant growth and cannot be simply deduced from shortâ€term mechanisms. Plant, Cell and Environment, 2017, 40, 846-857.	5.7	34
17	Distinct controls of leaf widening and elongation by light and evaporative demand in maize. Plant, Cell and Environment, 2017, 40, 2017-2028.	5.7	31
18	Spatial and temporal analysis of nonâ€steady elongation of rice leaves. Plant, Cell and Environment, 2009, 32, 1561-1572.	5.7	28

BORIS PARENT

#	Article	IF	CITATIONS
19	The use of thermal time in plant studies has a sound theoretical basis provided that confounding effects are avoided. Journal of Experimental Botany, 2019, 70, 2359-2370.	4.8	26
20	Experimental and modeling evidence of carbon limitation of leaf appearance rate for spring and winter wheat. Journal of Experimental Botany, 2019, 70, 2449-2462.	4.8	21
21	The plasma membrane aquaporin ZmPIP2;5 enhances the sensitivity of stomatal closure to water deficit. Plant, Cell and Environment, 2022, 45, 1146-1156.	5.7	18
22	Heat susceptibility of grain filling in wheat (Triticum aestivum L.) linked with rapid chlorophyll loss during a 3-day heat treatment. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	11
23	Towards parsimonious ecophysiological models that bridge ecology and agronomy. New Phytologist, 2016, 210, 380-382.	7.3	10
24	Simulating the effect of flowering time on maize individual leaf area in contrasting environmental scenarios. Journal of Experimental Botany, 2020, 71, 5577-5588.	4.8	6
25	Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains. AoB PLANTS, 2017, , plw092.	2.3	4
26	Sensitivities to temperature and evaporative demand in wheat relatives. Journal of Experimental Botany, 2021, , .	4.8	2