
Zhenxiao Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6032445/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synergistic passivation by alkali metal and halogenoid ions for high efficiency HTM-free carbon-based CsPbI2Br solar cells. Chemical Engineering Journal, 2022, 430, 133083.	12.7	26
2	Dualâ€Functional Quantum Dot Seeding Growth of Highâ€Quality Airâ€Processed CsPbl ₂ Br Film for Carbonâ€Based Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100989.	5.8	20
3	Free-standing 3D nitrogen-doped graphene/Co4N aerogels with ultrahigh sulfur loading for high volumetric energy density Li-S batteries. Journal of Alloys and Compounds, 2022, 901, 163625.	5.5	25
4	Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chemical Reviews, 2022, 122, 4091-4162.	47.7	52
5	Airâ€Processed Carbonâ€Based Cs _{0.5} FA _{0.5} Pbl ₃ –Cs ₄ Pbl ₆ Heterostructure Perovskite Solar Cells with Efficiency Over 16%. Solar Rrl, 2022, 6, .	5.8	11
6	Cs2SnI6 nanocrystals enhancing hole extraction for efficient carbon-based CsPbI2Br perovskite solar cells. Chemical Engineering Journal, 2022, 440, 135710.	12.7	31
7	Antioxidative Stannous Oxalate Derived Leadâ€Free Stable CsSnX ₃ (X=Cl, Br, and I) Perovskite Nanocrystals. Angewandte Chemie, 2021, 133, 670-675.	2.0	23
8	Allâ€Inorganic CsPbI ₃ Quantum Dot Solar Cells with Efficiency over 16% by Defect Control. Advanced Functional Materials, 2021, 31, 2005930.	14.9	101
9	Znâ€Cuâ€Inâ€Sâ€Se Quinary "Green―Alloyed Quantumâ€Dotâ€Sensitized Solar Cells with a Certified Efficie 14.4 %. Angewandte Chemie - International Edition, 2021, 60, 6137-6144.	ncy of 13.8	72
10	Hole transport materials mediating hole transfer for high efficiency quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2021, 9, 997-1005.	10.3	12
11	Antioxidative Stannous Oxalate Derived Leadâ€Free Stable CsSnX ₃ (X=Cl, Br, and I) Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 660-665.	13.8	55
12	Znâ€Cuâ€Inâ€Sâ€Se Quinary "Green―Alloyed Quantumâ€Dotâ€Sensitized Solar Cells with a Certified Efficie 14.4 %. Angewandte Chemie, 2021, 133, 6202-6209.	ncy of 2.0	8
13	Improving the Efficiency of Quantum Dot Sensitized Solar Cells beyond 15% via Secondary Deposition. Journal of the American Chemical Society, 2021, 143, 4790-4800.	13.7	112
14	Modification of Energy Level Alignment for Boosting Carbonâ€Based CsPbI ₂ Br Solar Cells with 14% Certified Efficiency. Advanced Functional Materials, 2021, 31, 2011187.	14.9	89
15	Surface Defect Engineering of CsPbBr ₃ Nanocrystals for High Efficient Photocatalytic CO ₂ Reduction. Solar Rrl, 2021, 5, 2100154.	5.8	39
16	Modification of compact TiO2 layer by TiCl4-TiCl3 mixture treatment and construction of high-efficiency carbon-based CsPbl2Br perovskite solar cells. Journal of Energy Chemistry, 2021, 63, 442-451.	12.9	17
17	Lightweight Free-Standing 3D Nitrogen-Doped Graphene/TiN Aerogels with Ultrahigh Sulfur Loading for High Energy Density Li–S Batteries. ACS Applied Energy Materials, 2021, 4, 7599-7610.	5.1	15
18	Proton Initiated Ligand Exchange Reactions for Colloidal Nanocrystals Functionalized by Inorganic Ligands with Extremely Weak Coordination Ability. Chemistry of Materials, 2020, 32, 630-637.	6.7	14

Zhenxiao Pan

#	Article	IF	CITATIONS
19	Perovskiteâ€Compatible Carbon Electrode Improving the Efficiency and Stability of CsPbI ₂ Br Solar Cells. Solar Rrl, 2020, 4, 2000431.	5.8	30
20	Enhancing Adsorption and Reaction Kinetics of Polysulfides Using CoP-Coated N-Doped Mesoporous Carbon for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 43844-43853.	8.0	60
21	Mild-method synthesised rGO–TiO2 as an effective Polysulphide–Barrier for Lithium–Sulphur batteries. Journal of Alloys and Compounds, 2020, 836, 155341.	5.5	17
22	Quantum dot materials engineering boosting the quantum dot sensitized solar cell efficiency over 13%. Journal of Materials Chemistry A, 2020, 8, 10233-10241.	10.3	61
23	Bifunctional TiS2/CNT as efficient polysulfide barrier to improve the performance of lithium–sulfur battery. Journal of Alloys and Compounds, 2020, 832, 154947.	5.5	34
24	MOF-Derived Co,N Codoped Carbon/Ti Mesh Counter Electrode for High-Efficiency Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 4974-4979.	4.6	25
25	Plasmonic Effect with Tailored Au@TiO ₂ Nanorods in Photoanode for Quantum Dot Sensitized Solar Cells. ACS Applied Energy Materials, 2019, 2, 5917-5924.	5.1	19
26	ZnS _{<i>x</i>} Se _{1–<i>x</i>} Alloy Passivation Layer for High-Efficiency Quantum-Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 41415-41423.	8.0	29
27	Boosting the Performance of Environmentally Friendly Quantum Dotâ€5ensitized Solar Cells over 13% Efficiency by Dual Sensitizers with Cascade Energy Structure. Advanced Materials, 2019, 31, e1903696.	21.0	51
28	TiO2 hierarchical nanowire-P25 particulate composite photoanodes in combination with N-doped mesoporous carbon/Ti counter electrodes for high performance quantum dot-sensitized solar cells. Solar Energy, 2019, 191, 459-467.	6.1	11
29	One-step solution deposition of CsPbBr ₃ based on precursor engineering for efficient all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 22420-22428.	10.3	116
30	Enhancing Loading Amount and Performance of Quantum-Dot-Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots from Bicomponent Solvents. Journal of Physical Chemistry Letters, 2019, 10, 229-237.	4.6	21
31	Selenium cooperated polysulfide electrolyte for efficiency enhancement of quantum dot-sensitized solar cells. Journal of Energy Chemistry, 2019, 38, 147-152.	12.9	15
32	Solar Paint from TiO2 Particles Supported Quantum Dots for Photoanodes in Quantum Dot–Sensitized Solar Cells. ACS Omega, 2018, 3, 1102-1109.	3.5	24
33	Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells. RSC Advances, 2018, 8, 3637-3645.	3.6	52
34	Quantum dot-sensitized solar cells. Chemical Society Reviews, 2018, 47, 7659-7702.	38.1	344
35	Self-supported metal sulphide nanocrystals-assembled nanosheets on carbon paper as efficient counter electrodes for quantum-dot-sensitized solar cells. Science China Chemistry, 2018, 61, 1338-1344.	8.2	7
36	Alloying Strategy in Cu–In–Ga–Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 5328-5336.	8.0	87

Zhenxiao Pan

#	Article	IF	CITATIONS
37	Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12%. Journal of Physical Chemistry Letters, 2017, 8, 559-564.	4.6	193
38	High Efficiency Quantum Dot Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots on Photoanodes. ACS Applied Materials & Interfaces, 2017, 9, 22549-22559.	8.0	39
39	Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 18936-18944.	8.0	28
40	Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte. Journal of Materials Chemistry A, 2017, 5, 14124-14133.	10.3	86
41	Copper deficient Zn–Cu–In–Se quantum dot sensitized solar cells for high efficiency. Journal of Materials Chemistry A, 2017, 5, 21442-21451.	10.3	73
42	Enhancing Electron and Hole Extractions for Efficient PbS Quantum Dot Solar Cells. Solar Rrl, 2017, 1, 1700176.	5.8	12
43	Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11%. Journal of Physical Chemistry Letters, 2016, 7, 3103-3111.	4.6	169
44	A ZnS and metal hydroxide composite passivation layer for recombination control in high efficiency quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 18976-18982.	10.3	25
45	Improving Loading Amount and Performance of Quantum Dot-Sensitized Solar Cells through Metal Salt Solutions Treatment on Photoanode. ACS Applied Materials & Interfaces, 2016, 8, 31006-31015.	8.0	24
46	Poly(vinyl pyrrolidone): a superior and general additive in polysulfide electrolytes for high efficiency quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 11416-11421.	10.3	49
47	Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 406-417.	4.6	140
48	Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%. Journal of Materials Chemistry A, 2016, 4, 877-886.	10.3	122
49	Effects of Metal Oxyhydroxide Coatings on Photoanode in Quantum Dot Sensitized Solar Cells. Chemistry of Materials, 2016, 28, 2323-2330.	6.7	63
50	Zn–Cu–In–Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%. Journal of the American Chemical Society, 2016, 138, 4201-4209.	13.7	537
51	Band Engineering in Core/Shell ZnTe/CdSe for Photovoltage and Efficiency Enhancement in Exciplex Quantum Dot Sensitized Solar Cells. ACS Nano, 2015, 9, 908-915.	14.6	241
52	Boosting Power Conversion Efficiencies of Quantum-Dot-Sensitized Solar Cells Beyond 8% by Recombination Control. Journal of the American Chemical Society, 2015, 137, 5602-5609.	13.7	367
53	Amorphous TiO ₂ Buffer Layer Boosts Efficiency of Quantum Dot Sensitized Solar Cells to over 9%. Chemistry of Materials, 2015, 27, 8398-8405.	6.7	197
54	CulnSe ₂ and CuInSe ₂ –ZnS based high efficiency "green―quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 1649-1655.	10.3	108

ZHENXIAO PAN

#	Article	IF	CITATIONS
55	Influence of linker molecules on interfacial electron transfer and photovoltaic performance of quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 20882-20888.	10.3	52
56	High-Efficiency "Green―Quantum Dot Solar Cells. Journal of the American Chemical Society, 2014, 136, 9203-9210.	13.7	547
57	Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells. Journal of the American Chemical Society, 2013, 135, 15913-15922.	13.7	400
58	Near Infrared Absorption of CdSe _{<i>x</i>} Te _{1–<i>x</i>} Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability. ACS Nano, 2013, 7, 5215-5222.	14.6	374
59	Highly Efficient Inverted Type-I CdS/CdSe Core/Shell Structure QD-Sensitized Solar Cells. ACS Nano, 2012, 6, 3982-3991.	14.6	307