Emilio Pimentel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6032195/publications.pdf Version: 2024-02-01

EMILIO DIMENTEI

#	Article	IF	CITATIONS
1	Evidence that the radioprotector effect of ascorbic acid depends on the radiation dose rate. Environmental Toxicology and Pharmacology, 2018, 62, 210-214.	4.0	17
2	On the persistence of the radioprotective effect of chlorophyllin (CHLN) in somatic cells of Drosophila. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1999, 446, 189-192.	1.7	16
3	Action of protoporphyrin-IX (PP-IX) in the lifespan of <i>Drosophila melanogaster</i> deficient in endogenous antioxidants, Sod and Cat. Open Journal of Animal Sciences, 2013, 03, 1-7.	0.6	15
4	Evidence suggesting that chlorophyllin (CHLN) may act as an inhibitor or a promoter of genetic damage induced by chromium(VI) oxide (CrO3) in somatic cells of Drosophila. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2003, 536, 139-144.	1.7	11
5	Evidence that chlorophyllin (CHLN) may behave as an inhibitor or a promoter of radiation-induced genetic damage in somatic cells of Drosophila. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2000, 472, 71-74.	1.7	10
6	Evidence that low concentrations of chlorophyllin (CHLN) increase the genetic damage induced by gamma rays in somatic cells of Drosophila. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 679, 84-86.	1.7	10
7	A study of the inhibition/promotion effects of sodium–copper chlorophyllin (SCC)-mediated mutagenesis in somatic cells of Drosophila. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2011, 722, 52-55.	1.7	5
8	Different radiation dose rate as radioprotection and the cross effect with chromium using in vivo somatic cells of Drosophila. Environmental Toxicology and Pharmacology, 2018, 63, 16-20.	4.0	5
9	Relationship between viability and genotoxic effect of gamma rays delivered at different dose rates in somatic cells of <i>Drosophila melanogaster</i> . Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 741-751.	2.3	5
10	Radioprotective effect of chloropyllin, protoporphyrin-IX and bilirubin compared with amifostine® in Drosophila melanogaster. Environmental Toxicology and Pharmacology, 2020, 80, 103464.	4.0	3
11	Evaluating the effect of low dose rate of gamma rays in germ cells of <i>Drosophila melanogaster</i> . International Journal of Radiation Biology, 2020, 96, 1068-1075.	1.8	3
12	Relationship between lifespan and somatic mutation in D. melanogaster after treatment with chlorophyllin. Environmental Toxicology and Pharmacology, 2022, 93, 103891.	4.0	3