
BjÃ,rn Henrik Hansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6032117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2006, 143, 263-274.	1.3	109
2	Uptake and toxicity of methylmethacrylateâ€based nanoplastic particles in aquatic organisms. Environmental Toxicology and Chemistry, 2016, 35, 1641-1649.	2.2	101
3	Comparative study on acute effects of water accommodated fractions of an artificially weathered crude oil on Calanus finmarchicus and Calanus glacialis (Crustacea: Copepoda). Science of the Total Environment, 2011, 409, 704-709.	3.9	85
4	Chemical and toxicological characterization of an unresolved complex mixtureâ€rich biodegraded crude oil. Environmental Toxicology and Chemistry, 2009, 28, 1815-1824.	2.2	84
5	Effects of naphthalene on gene transcription in Calanus finmarchicus (Crustacea: Copepoda). Aquatic Toxicology, 2008, 86, 157-165.	1.9	83
6	Induction and activity of oxidative stress-related proteins during waterborne Cd/Zn-exposure in brown trout (Salmo trutta). Chemosphere, 2007, 67, 2241-2249.	4.2	80
7	Acute toxicity of naturally and chemically dispersed oil on the filter-feeding copepod Calanus finmarchicus. Ecotoxicology and Environmental Safety, 2012, 86, 38-46.	2.9	79
8	Surface weathering and dispersibility of MC252 crude oil. Marine Pollution Bulletin, 2014, 87, 300-310.	2.3	79
9	Method for generating parameterized ecotoxicity data of dispersed oil for use in environmental modelling. Marine Pollution Bulletin, 2011, 62, 2106-2113.	2.3	78
10	Gene Expression of GST and CYP330A1 in Lipid-Rich and Lipid-Poor Female <i>Calanus finmarchicus</i> (Copepoda: Crustacea) Exposed to Dispersed Oil. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 131-139.	1.1	69
11	Transcriptional profiling of reproductive development, lipid storage and molting throughout the last juvenile stage of the marine copepod Calanus finmarchicus. Frontiers in Zoology, 2014, 11, 91.	0.9	66
12	Gross CO2 and CH4 emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR. Science of the Total Environment, 2011, 409, 5382-5391.	3.9	65
13	Effects of atrazine on hepatic metabolism and endocrine homeostasis in rainbow trout (Oncorhynchus mykiss). Toxicology and Applied Pharmacology, 2009, 234, 98-106.	1.3	64
14	Induction and activity of oxidative stress-related proteins during waterborne Cu-exposure in brown trout (Salmo trutta). Chemosphere, 2006, 65, 1707-1714.	4.2	59
15	Acute exposure of water soluble fractions of marine diesel on Arctic Calanus glacialis and boreal Calanus finmarchicus: Effects on survival and biomarker response. Science of the Total Environment, 2013, 449, 276-284.	3.9	56
16	Chemical comparison and acute toxicity of water accommodated fraction (WAF) of source and field collected Macondo oils from the Deepwater Horizon spill. Marine Pollution Bulletin, 2015, 91, 222-229.	2.3	56
17	Molecular effects of diethanolamine exposure on Calanus finmarchicus (Crustacea: Copepoda). Aquatic Toxicology, 2010, 99, 212-222.	1.9	51
18	Expression of ecdysteroids and cytochrome P450 enzymes during lipid turnover and reproduction in Calanus finmarchicus (Crustacea: Copepoda). General and Comparative Endocrinology, 2008, 158, 115-121.	0.8	49

BjÃ,rn Henrik Hansen

#	Article	IF	CITATIONS
19	Oil droplets do not affect assimilation and survival probability of first feeding larvae of North-East Arctic cod. Science of the Total Environment, 2011, 412-413, 148-153.	3.9	49
20	Acute Toxicity of Eight Oil Spill Response Chemicals to Temperate, Boreal, and Arctic Species. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 495-505.	1.1	46
21	Transcriptional effects on glutathione S-transferases in first feeding Atlantic cod (Gadus morhua) larvae exposed to crude oil. Chemosphere, 2010, 79, 905-913.	4.2	40
22	Transcriptional evidence for low contribution of oil droplets to acute toxicity from dispersed oil in first feeding Atlantic cod (Gadus morhua) larvae. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2011, 154, 333-345.	1.3	40
23	Is chemically dispersed oil more toxic to Atlantic cod (Gadus morhua) larvae than mechanically dispersed oil? A transcriptional evaluation. BMC Genomics, 2012, 13, 702.	1.2	40
24	Effects of dispersed oil on reproduction in the cold water copepod <i>Calanus finmarchicus</i> (Gunnerus). Environmental Toxicology and Chemistry, 2013, 32, 2045-2055.	2.2	39
25	GILL METAL BINDING AND STRESS GENE TRANSCRIPTION IN BROWN TROUT (SALMO TRUTTA) EXPOSED TO METAL ENVIRONMENTS: THE EFFECT OF PRE-EXPOSURE IN NATURAL POPULATIONS. Environmental Toxicology and Chemistry, 2007, 26, 944.	2.2	38
26	Suppression subtractive hybridization library prepared from the copepod Calanus finmarchicus exposed to a sublethal mixture of environmental stressors. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2007, 2, 250-256.	0.4	37
27	Toxicity data for modeling impacts of oil components in an Arctic ecosystem. Marine Environmental Research, 2013, 90, 9-17.	1.1	37
28	Oil droplet ingestion and oil fouling in the copepod <i>Calanus finmarchicus</i> exposed to mechanically and chemically dispersed crude oil. Environmental Toxicology and Chemistry, 2015, 34, 1899-1906.	2.2	36
29	Chemical composition and acute toxicity in the water after in situ burning – A laboratory experiment. Marine Pollution Bulletin, 2012, 64, 49-55.	2.3	35
30	Reproduction Dynamics in Copepods Following Exposure to Chemically and Mechanically Dispersed Crude Oil. Environmental Science & amp; Technology, 2015, 49, 3822-3829.	4.6	34
31	Developmental effects in fish embryos exposed to oil dispersions – The impact of crude oil micro-droplets. Marine Environmental Research, 2019, 150, 104753.	1.1	31
32	Medium-term exposure of the North Atlantic copepod <i>Calanus finmarchicus</i> (Gunnerus, 1770) to CO ₂ -acidified seawater: effects on survival and development. Biogeosciences, 2013, 10, 7481-7491.	1.3	30
33	Exposure to crude oil micro-droplets causes reduced food uptake in copepods associated with alteration in their metabolic profiles. Aquatic Toxicology, 2017, 184, 94-102.	1.9	29
34	Evidence for oligomerization of metallothioneins in their functional state. Journal of Chromatography A, 2002, 979, 249-254.	1.8	27
35	Modelling the dynamics of growth, development and lipid storage in the marine copepod Calanus finmarchicus. Marine Biology, 2017, 164, 1.	0.7	26
36	Embryonic exposure to produced water can cause cardiac toxicity and deformations in Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae. Marine Environmental Research, 2019, 148, 81-86.	1.1	26

#	Article	IF	CITATIONS
37	Microplastics do not increase bioaccumulation of petroleum hydrocarbons in Arctic zooplankton but trigger feeding suppression under co-exposure conditions. Science of the Total Environment, 2021, 751, 141264.	3.9	26
38	Acute and long-term biological effects of mechanically and chemically dispersed oil on lumpsucker (Cyclopterus lumpus). Marine Environmental Research, 2015, 105, 8-19.	1.1	25
39	Acute toxicity of dispersed crude oil on the cold-water copepod <i>Calanus finmarchicus</i> : Elusive implications of lipid content. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 549-557.	1.1	24
40	Transcriptional Profiling of Metabolic Transitions during Development and Diapause Preparation in the CopepodCalanus finmarchicus. Integrative and Comparative Biology, 2016, 56, 1157-1169.	0.9	24
41	Does Microbial Biodegradation of Water-Soluble Components of Oil Reduce the Toxicity to Early Life Stages of Fish?. Environmental Science & Technology, 2018, 52, 4358-4366.	4.6	24
42	Toxicokinetics of Crude Oil Components in Arctic Copepods. Environmental Science & Technology, 2018, 52, 9899-9907.	4.6	24
43	Acute and sub-lethal response to mercury in Arctic and boreal calanoid copepods. Aquatic Toxicology, 2014, 155, 160-165.	1.9	23
44	A comparison of methods for the measurement of CO ₂ and CH ₄ emissions from surface water reservoirs: Results from an international workshop held at Three Gorges Dam, June 2012. Limnology and Oceanography: Methods, 2015, 13, 15-29.	1.0	23
45	Stageâ€dependent and sexâ€dependent sensitivity to waterâ€soluble fractions of fresh and weathered oil in the marine copepod <i>Calanus finmarchicus</i> . Environmental Toxicology and Chemistry, 2016, 35, 728-735.	2.2	23
46	Modeling the toxicity of dissolved crude oil exposures to characterize the sensitivity of cod (Gadus) Tj ETQq0 0	0 rgBT /Ov 2.3	verlock 10 Tf 5 23
47	Partitioning of PAHs between Crude Oil Microdroplets, Water, and Copepod Biomass in Oil-in-Seawater Dispersions of Different Crude Oils. Environmental Science & Technology, 2018, 52, 14436-14444.	4.6	22
48	Adhesion of mechanically and chemically dispersed crude oil droplets to eggs of Atlantic cod (Gadus) Tj ETQq0 (138-143.	0 0 rgBT /C 3.9	Overlock 10 Tf 22
49	Concentrations of viable oil-degrading microorganisms are increased in feces from Calanus finmarchicus feeding in petroleum oil dispersions. Marine Pollution Bulletin, 2015, 98, 69-77.	2.3	20
50	Linking survival and biomarker responses over time. Environmental Toxicology and Chemistry, 2013, 32, 1842-1845.	2.2	20
51	Exposure of first-feeding cod larvae to dispersed crude oil results in similar transcriptional and metabolic responses as food deprivation. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 558-571.	1.1	19
52	Individual and molecular level effects of produced water contaminants on nauplii and adult females of <i>Calanus finmarchicus</i> . Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 585-601.	1.1	19
53	Characterisation of fine-grained tailings from a marble processing plant and their acute effects on the copepod Calanus finmarchicus. Chemosphere, 2017, 169, 700-708.	4.2	19
54	Modeling filtration of dispersed crude oil droplets by the copepod Calanus finmarchicus. Marine Environmental Research, 2015, 105, 1-7.	1.1	18

#	Article	IF	CITATIONS
55	Maternal polycyclic aromatic hydrocarbon (PAH) transfer and effects on offspring of copepods exposed to dispersed oil with and without oil droplets. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 881-894.	1.1	18
56	Ecotoxicological Mechanisms and Models in an Impact Analysis Tool for Oil Spills. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2011, 74, 605-619.	1.1	15
57	Capturing the life history of the marine copepod Calanus sinicus into a generic bioenergetics framework. Ecological Modelling, 2015, 299, 114-120.	1.2	15
58	Endocrine and AhR-CYP1A Pathway Responses to the Water-Soluble Fraction of Oil in Zebrafish (<i>Danio rerio</i> Hamilton). Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 506-515.	1.1	14
59	Acute hydrogen peroxide (H ₂ O ₂) exposure does not cause oxidative stress in late-copepodite stage of <i>Calanus finmarchicus</i> . Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 820-829.	1.1	14
60	The use of PAH, metabolite and lipid profiling to assess exposure and effects of produced water discharges on pelagic copepods. Science of the Total Environment, 2020, 714, 136674.	3.9	12
61	Toxicity and developmental effects of Arctic fuel oil types on early life stages of Atlantic cod (Gadus) Tj ETQq1 1	0.784314 1.9	rg $_{12}^{\text{BT}}$ /Over
62	Comparison of artificially weathered Macondo oil with field samples and evidence that weathering does not increase environmental acute toxicity. Marine Environmental Research, 2020, 157, 104928.	1.1	11
63	Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor. Journal of Insect Physiology, 2006, 52, 846-853.	0.9	10
64	Automatic determination of heart rates from microscopy videos of early life stages of fish. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 932-940.	1.1	10
65	Acute and sub-lethal effects of an anionic polyacrylamide on sensitive early life stages of Atlantic cod (Gadus morhua). Science of the Total Environment, 2019, 652, 1062-1070.	3.9	10
66	Metabolic fingerprinting of arctic copepods Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus. Polar Biology, 2013, 36, 1577-1586.	0.5	9
67	Atlantic cod (Gadus morhua) embryos are highly sensitive to short-term 3,4-dichloroaniline exposure. Toxicology Reports, 2021, 8, 1754-1761.	1.6	9
68	Acute and long-term effects of anionic polyacrylamide (APAM) on different developmental stages of two marine copepod species. Chemosphere, 2020, 257, 127259.	4.2	6
69	Combined effects of exposure to engineered silver nanoparticles and the water-soluble fraction of crude oil in the marine copepod Calanus finmarchicus. Aquatic Toxicology, 2020, 227, 105582.	1.9	5
70	Determination of C ₀ –C ₉ alkyl phenols in producedâ€waterâ€exposed fish eggs using gas chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2020, 34, e8950.	0.7	3
71	Application of chemical herders do not increase acute crude oil toxicity to cold-water marine species. Science of the Total Environment, 2022, 823, 153779.	3.9	1
72	Testing a simple energy-budget model for yolk-feeding stages of cleaner fish. Ecological Modelling, 2022, 469, 110005.	1.2	1

#	Article	IF	CITATIONS
73	Exposure to low environmental copper concentrations does not affect survival and development in Atlantic cod (Gadus morhua) early life stages. Toxicology Reports, 2021, 8, 1909-1916.	1.6	Ο