Soraya Scuderi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/60320/publications.pdf

Version: 2024-02-01

28 papers

3,068 citations

471509 17 h-index 25 g-index

28 all docs 28 docs citations

times ranked

28

6212 citing authors

#	Article	IF	CITATIONS
1	PsychENCODE and beyond: transcriptomics and epigenomics of brain development and organoids. Neuropsychopharmacology, 2021, 46, 70-85.	5.4	15
2	Cell-to-Cell Adhesion and Neurogenesis in Human Cortical Development: A Study Comparing 2D Monolayers with 3D Organoid Cultures. Stem Cell Reports, 2021, 16, 264-280.	4.8	16
3	26.1 Biological Action of Ketamine in Developing Neurons: Hope in Treating Maternal Depression to Reduce Children Mood Disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 2021, 60, S201.	0.5	O
4	Complex mosaic structural variations in human fetal brains. Genome Research, 2020, 30, 1695-1704.	5 . 5	21
5	Induced pluripotent stem cells as models of human neurodevelopmental disorders., 2020,, 99-127.		O
6	The role of somatic mosaicism in brain disease. Current Opinion in Genetics and Development, 2020, 65, 84-90.	3. 3	20
7	Revealing the brain's molecular architecture. Science, 2018, 362, 1262-1263.	12.6	45
8	Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science, 2018, 362, .	12.6	220
9	Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 2018, 362, .	12.6	516
10	Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 2018, 362, .	12.6	805
11	Comprehensive functional genomic resource and integrative model for the human brain. Science, 2018, 362, .	12.6	618
12	Effects of Synthetic Anti-Inflammatory Sterol in CB3V-Induced Myocarditis: A Morphological Study on Heart Muscle Tissue. Journal of Functional Morphology and Kinesiology, 2016, 1, 69-89.	2.4	10
13	Heparin-binding EGF-like growth factor in diagnosis of malignant phyllodes tumor of the breast: a case report. Gazzetta Medica Italiana Archivio Per Le Scienze Mediche, 2016, 176, .	0.1	O
14	Emerging Role of PACAP as a New Potential Therapeutic Target in Major Diabetes Complications. International Journal of Endocrinology, 2015, 2015, 1-11.	1.5	19
15	Different Retinal Expression Patterns of IL- $1\hat{l}_{\pm}$, IL- $1\hat{l}_{-}^2$, and Their Receptors in a Rat Model of Type 1 STZ-Induced Diabetes. Journal of Molecular Neuroscience, 2015, 56, 431-439.	2.3	36
16	Changes in serotonin (5-HT) and brain-derived neurotrophic factor (BDFN) expression in frontal cortex and hippocampus of aged rat treated with high tryptophan diet. Brain Research Bulletin, 2015, 119, 12-18.	3.0	36
17	The PsychENCODE project. Nature Neuroscience, 2015, 18, 1707-1712.	14.8	371
18	Increasing the Coding Potential of Genomes Through Alternative Splicing: The Case of PARK2 Gene. Current Genomics, 2014, 15, 203-216.	1.6	32

#	Article	lF	CITATION
19	Alternative Splicing Generates Different Parkin Protein Isoforms: Evidences in Human, Rat, and Mouse Brain. BioMed Research International, 2014, 2014, 1-14.	1.9	24
20	Davunetide (NAP) Protects the Retina Against Early Diabetic Injury by Reducing Apoptotic Death. Journal of Molecular Neuroscience, 2014, 54, 395-404.	2.3	31
21	NAP Reduces Murine Microvascular Endothelial Cells Proliferation Induced by Hyperglycemia. Journal of Molecular Neuroscience, 2014, 54, 405-413.	2.3	25
22	PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: Involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Experimental Cell Research, 2014, 322, 108-121.	2.6	49
23	Antiproliferative Effects of PACAP and VIP in Serum-Starved Glioma Cells. Journal of Molecular Neuroscience, 2013, 51, 503-513.	2.3	34
24	Increased Hippocampal CREB Phosphorylation in Dopamine D3 Receptor Knockout Mice Following Passive Avoidance Conditioning. Neurochemical Research, 2013, 38, 2516-2523.	3.3	6
25	Ameliorative effect of PACAP and VIP against increased permeability in a model of outer blood retinal barrier dysfunction. Peptides, 2013, 39, 119-124.	2.4	52
26	Dopamine D3 receptor deletion increases tissue plasminogen activator (tPA) activity in prefrontal cortex and hippocampus. Neuroscience, 2013, 250, 546-556.	2.3	22
27	Epidermal growth factor receptor (EGFR) and neuregulin (Neu) activation in human airway epithelial cells exposed to nickel acetate. Toxicology in Vitro, 2012, 26, 280-287.	2.4	8
28	Involvement of PACAP/ADNP Signaling in the Resistance to Cell Death in Malignant Peripheral Nerve Sheath Tumor (MPNST) Cells. Journal of Molecular Neuroscience, 2012, 48, 674-683.	2.3	37