
Terry D Hinds Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6031960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants, 2022, 11, 179.	2.2	22
2	Adipose-Specific PPARα Knockout Mice Have Increased Lipogenesis by PASK–SREBP1 Signaling and a Polarity Shift to Inflammatory Macrophages in White Adipose Tissue. Cells, 2022, 11, 4.	1.8	33
3	Hepatic kinome atlas: An inâ€depth identification of kinase pathways in liver fibrosis of humans and rodents. Hepatology, 2022, 76, 1376-1388.	3.6	22
4	Early Life Stress Increases Lipid Storage in Female Mice Fed a High Fat Diet via MR Activation in Adipocytes. FASEB Journal, 2022, 36, .	0.2	0
5	Glucocorticoid Receptor Beta as a Contributor to Prostate Cancer Growth and Migration. FASEB Journal, 2022, 36, .	0.2	0
6	Bilirubin as a metabolic hormone: the physiological relevance of low levels. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E191-E207.	1.8	90
7	Bilirubin: A Ligand of the PPARα Nuclear Receptor. , 2021, , 463-482.		3
8	Identification of Binding Regions of Bilirubin in the Ligand-Binding Pocket of the Peroxisome Proliferator-Activated Receptor-A (PPARalpha). Molecules, 2021, 26, 2975.	1.7	25
9	Cutting Edge: Steroid Responsiveness in Foxp3+ Regulatory T Cells Determines Steroid Sensitivity during Allergic Airway Inflammation in Mice. Journal of Immunology, 2021, 207, 765-770.	0.4	7
10	Editorial: Oxidative Stress, Antioxidants, Transcription Factors, and Assimilation of Signal Transduction Pathways in Obesity-Related Disorders. Frontiers in Pharmacology, 2021, 12, 759468.	1.6	0
11	FKBP51 and the molecular chaperoning of metabolism. Trends in Endocrinology and Metabolism, 2021, 32, 862-874.	3.1	29
12	Rats Genetically Selected for High Aerobic Exercise Capacity Have Elevated Plasma Bilirubin by Upregulation of Hepatic Biliverdin Reductase-A (BVRA) and Suppression of UGT1A1. Antioxidants, 2020, 9, 889.	2.2	22
13	Natural Product Heme Oxygenase Inducers as Treatment for Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2020, 21, 9493.	1.8	36
14	Bilirubin Nanoparticles Reduce Diet-Induced Hepatic Steatosis, Improve Fat Utilization, and Increase Plasma β-Hydroxybutyrate. Frontiers in Pharmacology, 2020, 11, 594574.	1.6	50
15	Bilirubin remodels murine white adipose tissue by reshaping mitochondrial activity and the coregulator profile of peroxisome proliferator–activated receptor α. Journal of Biological Chemistry, 2020, 295, 9804-9822.	1.6	58
16	Chronic Ethanol Consumption Alters Glucocorticoid Receptor Isoform Expression in Stress Neurocircuits and Mesocorticolimbic Brain Regions of Alcohol-Preferring Rats. Neuroscience, 2020, 437, 107-116.	1.1	11
17	Biliverdin Reductase A (BVRA) Knockout in Adipocytes Induces Hypertrophy and Reduces Mitochondria in White Fat of Obese Mice. Biomolecules, 2020, 10, 387.	1.8	41
18	Renal Fibrosis Is Significantly Attenuated Following Targeted Disruption of <i>Cd40</i> in Experimental Renal Ischemia. Journal of the American Heart Association, 2020, 9, e014072.	1.6	11

TERRY D HINDS JR

#	Article	IF	CITATIONS
19	Bilirubin: A Fat Busting Metabolic Hormone?. FASEB Journal, 2020, 34, 1-1.	0.2	0
20	CRISPR Cas9-mediated deletion of biliverdin reductase A (BVRA) in mouse liver cells induces oxidative stress and lipid accumulation. Archives of Biochemistry and Biophysics, 2019, 672, 108072.	1.4	28
21	Bilirubin Safeguards Cardiorenal and Metabolic Diseases: a Protective Role in Health. Current Hypertension Reports, 2019, 21, 87.	1.5	44
22	Loss of hepatic PPARα promotes inflammation and serum hyperlipidemia in diet-induced obesity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R733-R745.	0.9	65
23	RNA sequencing in human HepC2 hepatocytes reveals PPAR-α mediates transcriptome responsiveness of bilirubin. Physiological Genomics, 2019, 51, 234-240.	1.0	53
24	Bilirubin in the Liver–Gut Signaling Axis. Trends in Endocrinology and Metabolism, 2018, 29, 140-150.	3.1	147
25	Bilirubin, a Cardiometabolic Signaling Molecule. Hypertension, 2018, 72, 788-795.	1.3	70
26	Bilirubin, a new therapeutic for kidney transplant?. Transplantation Reviews, 2018, 32, 234-240.	1.2	31
27	Loss of biliverdin reductase-A promotes lipid accumulation and lipotoxicity in mouse proximal tubule cells. American Journal of Physiology - Renal Physiology, 2018, 315, F323-F331.	1.3	54
28	Biliverdin reductase and bilirubin in hepatic disease. American Journal of Physiology - Renal Physiology, 2018, 314, G668-G676.	1.6	65
29	A Novel Fluorescence-Based Assay for the Measurement of Biliverdin Reductase Activity. , 2018, 5, 35-45.		25
30	Bilirubin Induces the Burning of Fat via the Nuclear Receptor PPARα. FASEB Journal, 2018, 32, 603.5.	0.2	0
31	Bilirubin, a novel endocrine hormone with fat burning properties. FASEB Journal, 2018, 32, .	0.2	2
32	Loss of biliverdin reductaseâ€A (BVRA) promotes lipid accumulation and lipotoxicity in mouse proximal tubule cells. FASEB Journal, 2018, 32, 849.1.	0.2	0
33	Mice with hyperbilirubinemia due to Gilbert's syndrome polymorphism are resistant to hepatic steatosis by decreased serine 73 phosphorylation of PPARα. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E244-E252.	1.8	66
34	Deciphering the Roles of Thiazolidinediones and PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi mathvariant="bold">γ</mml:mi </mml:mrow>in Bladder Cancer. PPAR Research, 2017, 2017, 1-9.</mml:math 	1.1	46
35	Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas?. Oncotarget, 2017, 8, 3640-3648.	0.8	36
36	Timcodar (VX-853) Is a Non-FKBP12 Binding Macrolide Derivative That Inhibits PPAR <i>γ</i> and Suppresses Adipogenesis. PPAR Research, 2016, 2016, 1-10.	1.1	12

TERRY D HINDS JR

#	Article	IF	CITATIONS
37	Overexpression of Glucocorticoid Receptor Î ² Enhances Myogenesis and Reduces Catabolic Gene Expression. International Journal of Molecular Sciences, 2016, 17, 232.	1.8	22
38	LB-S&T-14 MICRO-RNA 144 ENHANCES GLUCOCORTICOID RECEPTOR BETA DURING BLADDER CANCER INVASION. Journal of Urology, 2016, 195, .	0.2	0
39	Protein Phosphatase PP5 Controls Bone Mass and the Negative Effects of Rosiglitazone on Bone through Reciprocal Regulation of PPARÎ ³ (Peroxisome Proliferator-activated Receptor Î ³) and RUNX2 (Runt-related Transcription Factor 2). Journal of Biological Chemistry, 2016, 291, 24475-24486.	1.6	21
40	Does bilirubin prevent hepatic steatosis through activation of the PPARα nuclear receptor?. Medical Hypotheses, 2016, 95, 54-57.	0.8	42
41	Prostate Cancer in African American Men: The Effect of Androgens and microRNAs on Epidermal Growth Factor Signaling. Hormones and Cancer, 2016, 7, 296-304.	4.9	5
42	FKBP51 Null Mice Are Resistant to Diet-Induced Obesity and the PPARÎ ³ Agonist Rosiglitazone. Endocrinology, 2016, 157, 3888-3900.	1.4	62
43	Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3β Phosphorylation of Serine 73 of Peroxisome Proliferator-activated Receptor (PPAR) α. Journal of Biological Chemistry, 2016, 291, 25179-25191.	1.6	104
44	Glucocorticoid Receptor Î ² Induces Hepatic Steatosis by Augmenting Inflammation and Inhibition of the Peroxisome Proliferator-activated Receptor (PPAR) α. Journal of Biological Chemistry, 2016, 291, 25776-25788.	1.6	65
45	The glucocorticoid receptor: cause of or cure for obesity?. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E249-E257.	1.8	111
46	Ginkgo biloba Extract Prevents Female Mice from Ischemic Brain Damage and the Mechanism Is Independent of the HO1/Wnt Pathway. Translational Stroke Research, 2016, 7, 120-131.	2.3	50
47	Bilirubin Binding to PPARα Inhibits Lipid Accumulation. PLoS ONE, 2016, 11, e0153427.	1.1	145
48	Glucocorticoid receptor beta increases migration of human bladder cancer cells. Oncotarget, 2016, 7, 27313-27324.	0.8	38
49	Sweet-P inhibition of glucocorticoid receptor β as a potential cancer therapy. Journal of Plant Sciences (Science Publishing Group), 2016, 3, .	0.1	5
50	Involvement of the Androgen and Glucocorticoid Receptors in Bladder Cancer. International Journal of Endocrinology, 2015, 2015, 1-10.	0.6	25
51	Biliverdin reductase isozymes in metabolism. Trends in Endocrinology and Metabolism, 2015, 26, 212-220.	3.1	111
52	Glucocorticoid Receptor β Stimulates Akt1 Growth Pathway by Attenuation of PTEN. Journal of Biological Chemistry, 2014, 289, 17885-17894.	1.6	44
53	PPARÎ [~] binding to heme oxygenase 1 promoter prevents angiotensin II-induced adipocyte dysfunction in Goldblatt hypertensive rats. International Journal of Obesity, 2014, 38, 456-465.	1.6	26
54	FKBP51 Controls Cellular Adipogenesis through p38 Kinase-Mediated Phosphorylation of GRα and PPARγ. Molecular Endocrinology, 2014, 28, 1265-1275.	3.7	48

TERRY D HINDS JR

#	Article	IF	CITATIONS
55	Analysis of FK506, timcodar (VXâ€853) and FKBP51 and FKBP52 chaperones in control of glucocorticoid receptor activity and phosphorylation. Pharmacology Research and Perspectives, 2014, 2, e00076.	1.1	17
56	FKBP51 Reciprocally Regulates GRα and PPARγ Activation via the Akt-p38 Pathway. Molecular Endocrinology, 2014, 28, 1254-1264.	3.7	44
57	Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation and lipid accumulation via upregulation of the canonical Wnt signaling cascade. Stem Cell Research and Therapy, 2013, 4, 28.	2.4	84
58	Suppression of protein kinase C theta contributes to enhanced myogenesis In vitro via IRS1 and ERK1/2 phosphorylation. BMC Cell Biology, 2013, 14, 39.	3.0	14
59	Peroxisome Proliferator-Activated Receptor δAgonist, HPP593, Prevents Renal Necrosis under Chronic Ischemia. PLoS ONE, 2013, 8, e64436.	1.1	40
60	The nuclear receptor cochaperone FKBP51 is required for dietâ€induced visceral adiposity. FASEB Journal, 2012, 26, lb716.	0.2	0
61	Abstract 74: Heme Oxygenase-PPARα Induction of FGF21 in Hepatocytes Recruits pAMPK/pAKT and Attenuates Insulin Resistance in Obese Mice. Hypertension, 2012, 60, .	1.3	0
62	Protein Phosphatase 5 Mediates Lipid Metabolism through Reciprocal Control of Glucocorticoid Receptor and Peroxisome Proliferator-activated Receptor-γ (PPARγ). Journal of Biological Chemistry, 2011, 286, 42911-42922.	1.6	79
63	Insulin regulates menin expression, cytoplasmic localization, and interaction with FOXO1. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E474-E483.	1.8	33
64	FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A. Oncogene, 2010, 29, 1691-1701.	2.6	99
65	Fkbp52 Regulates Androgen Receptor Transactivation Activity and Male Urethra Morphogenesis. Journal of Biological Chemistry, 2010, 285, 27776-27784.	1.6	33
66	Susceptibility to Diet-Induced Hepatic Steatosis and Glucocorticoid Resistance in FK506-Binding Protein 52-Deficient Mice. Endocrinology, 2010, 151, 3225-3236.	1.4	50
67	Discovery of Glucocorticoid Receptor-β in Mice with a Role in Metabolism. Molecular Endocrinology, 2010, 24, 1715-1727.	3.7	112
68	Targeted ablation reveals a novel role of FKBP52 in gene-specific regulation of glucocorticoid receptor transcriptional activity. Journal of Steroid Biochemistry and Molecular Biology, 2009, 113, 36-45.	1.2	31
69	Protein phosphatase 5. International Journal of Biochemistry and Cell Biology, 2008, 40, 2358-2362.	1.2	133
70	Control of Glucocorticoid and Progesterone Receptor Subcellular Localization by the Ligand-Binding Domain Is Mediated by Distinct Interactions with Tetratricopeptide Repeat Proteins. Biochemistry, 2008, 47, 10471-10480.	1.2	63
71	Sweet-P inhibition of glucocorticoid receptor \hat{I}^2 as a potential cancer therapy. Cancer Cell & Microenvironment, 0, , .	0.8	3
72	Novel Function for Bilirubin as a Metabolic Signaling Molecule: Implications for Kidney Diseases. Kidney360, 0, , 10.34067/KID.0000062022.	0.9	2