Rong Grace Zhai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6031955/publications.pdf

Version: 2024-02-01

47 papers 3,842 citations

249298 26 h-index 263392 45 g-index

57 all docs

57 docs citations

57 times ranked

5564 citing authors

#	Article	IF	CITATIONS
1	Human Nmnat1 Promotes Autophagic Clearance of Amyloid Plaques in a Drosophila Model of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2022, 14, 852972.	1.7	7
2	Phenylbutyrate modulates polyamine acetylase and ameliorates Snyder-Robinson syndrome in a Drosophila model and patient cells. JCI Insight, 2022, 7, .	2.3	7
3	Development of a Redox-Sensitive Spermine Prodrug for the Potential Treatment of Snyder Robinson Syndrome. Journal of Medicinal Chemistry, 2021, 64, 15593-15607.	2.9	7
4	NMNAT promotes glioma growth through regulating post-translational modifications of P53 to inhibit apoptosis. ELife, 2021, 10 , .	2.8	13
5	Exposure to Aerosolized Algal Toxins in South Florida Increases Short- and Long-Term Health Risk in Drosophila Model of Aging. Toxins, 2020, 12, 787.	1.5	13
6	Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes. Nature Genetics, 2020, 52, 473-481.	9.4	97
7	Nicotinamide mononucleotide adenylyltransferase uses its NAD+ substrate-binding site to chaperone phosphorylated Tau. ELife, 2020, 9, .	2.8	18
8	Knight in Splicing Armor: Alternative Splicing as a Neuroprotective Mechanism., 2020, 4, 1-21.		0
9	Nmnat restores neuronal integrity by neutralizing mutant Huntingtin aggregate-induced progressive toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19165-19175.	3.3	23
10	MicroRNA miR-1002 Enhances NMNAT-Mediated Stress Response by Modulating Alternative Splicing. IScience, 2019, 19, 1048-1064.	1.9	3
11	microRNA-92a regulates the expression of aphid bacteriocyte-specific secreted protein 1. BMC Research Notes, 2019, 12, 638.	0.6	7
12	Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence. Experimental Neurology, 2019, 320, 112961.	2.0	46
13	Dysfunction of GRAP, encoding the GRB2-related adaptor protein, is linked to sensorineural hearing loss. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1347-1352.	3.3	15
14	Nmnat mitigates sensory dysfunction in a $\langle i \rangle$ Drosophila $\langle i \rangle$ model of paclitaxel-induced peripheral neuropathy. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	17
15	Quantitative Cell Biology of Neurodegeneration in Drosophila Through Unbiased Analysis of Fluorescently Tagged Proteins Using ImageJ. Journal of Visualized Experiments, 2018, , .	0.2	20
16	NMNAT: It's an NAD + synthase… It's a chaperone… It's a neuroprotector. Current Opinion in Gen and Development, 2017, 44, 156-162.	etics 1.5	60
17	Spermine synthase deficiency causes lysosomal dysfunction and oxidative stress in models of Snyder-Robinson syndrome. Nature Communications, 2017, 8, 1257.	5.8	64
18	Defining Disease, Diagnosis, and Translational Medicine within a Homeostatic Perturbation Paradigm: The National Institutes of Health Undiagnosed Diseases Program Experience. Frontiers in Medicine, 2017, 4, 62.	1.2	23

#	Article	IF	CITATIONS
19	Attenuation of polyglutamine-induced toxicity by enhancement of mitochondrial OXPHOS in yeast and fly models of aging. Microbial Cell, 2016, 3, 338-351.	1.4	15
20	Drosophila Models of Tauopathy. , 2015, , 829-848.		1
21	Alternative splicing of Drosophila Nmnat functions as a switch to enhance neuroprotection under stress. Nature Communications, 2015, 6, 10057.	5 . 8	48
22	Nicotinamide mononucleotide adenylyltransferase maintains active zone structure by stabilizing Bruchpilot. EMBO Reports, 2013, 14, 87-94.	2.0	24
23	NMNATs, evolutionarily conserved neuronal maintenance factors. Trends in Neurosciences, 2013, 36, 632-640.	4.2	85
24	The role of autophagy in Nmnat-mediated protection against hypoxia-induced dendrite degeneration. Molecular and Cellular Neurosciences, 2013, 52, 140-151.	1.0	18
25	Mislocalization of neuronal mitochondria reveals regulation of Wallerian degeneration and NMNAT/WLDS-mediated axon protection independent of axonal mitochondria. Human Molecular Genetics, 2013, 22, 1601-1614.	1.4	64
26	CREB-activity and nmnat2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. Human Molecular Genetics, 2012, 21, 251-267.	1.4	98
27	Protein Aggregates Are Recruited to Aggresome by Histone Deacetylase 6 via Unanchored Ubiquitin C Termini. Journal of Biological Chemistry, 2012, 287, 2317-2327.	1.6	169
28	NMNAT suppresses Tau-induced neurodegeneration by promoting clearance of hyperphosphorylated Tau oligomers in a Drosophila model of tauopathy. Human Molecular Genetics, 2012, 21, 237-250.	1.4	97
29	Nmnat exerts neuroprotective effects in dendrites and axons. Molecular and Cellular Neurosciences, 2011, 48, 1-8.	1.0	47
30	Assaying Locomotor, Learning, and Memory Deficits in Drosophila Models of Neurodegeneration. Journal of Visualized Experiments, 2011, , .	0.2	117
31	Nicotinamide Mononucleotide Adenylyltransferase Is a Stress Response Protein Regulated by the Heat Shock Factor/Hypoxia-inducible Factor $\hat{1}$ Pathway. Journal of Biological Chemistry, 2011, 286, 19089-19099.	1.6	36
32	Dealing with Misfolded Proteins: Examining the Neuroprotective Role of Molecular Chaperones in Neurodegeneration. Molecules, 2010, 15, 6859-6887.	1.7	37
33	\hat{l}^2 -N-Methylamino-L-Alanine Induces Neurological Deficits and Shortened Life Span in Drosophila. Toxins, 2010, 2, 2663-2679.	1.5	25
34	Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme. Cellular and Molecular Life Sciences, 2009, 66, 2805-2818.	2.4	78
35	BMAA neurotoxicity in Drosophila. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2009, 10, 61-66.	2.3	19
36	NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature, 2008, 452, 887-891.	13.7	193

#	Article	IF	CITATIONS
37	Activity-Independent Prespecification of Synaptic Partners in the Visual Map of Drosophila. Current Biology, 2006, 16, 1835-1843.	1.8	96
38	Drosophila NMNAT Maintains Neural Integrity Independent of Its NAD Synthesis Activity. PLoS Biology, 2006, 4, e416.	2.6	160
39	The v-ATPase V 0 Subunit a1 Is Required for a Late Step in Synaptic Vesicle Exocytosis in Drosophila. Cell, 2005, 121, 607-620.	13.5	297
40	Mutations in Drosophila sec15 Reveal a Function in Neuronal Targeting for a Subset of Exocyst Components. Neuron, 2005, 46, 219-232.	3.8	129
41	The Architecture of the Active Zone in the Presynaptic Nerve Terminal. Physiology, 2004, 19, 262-270.	1.6	244
42	Hauling t-SNAREs on the microtubule highway. Nature Cell Biology, 2004, 6, 918-919.	4.6	8
43	Unitary Assembly of Presynaptic Active Zones from Piccolo-Bassoon Transport Vesicles. Neuron, 2003, 38, 237-252.	3.8	285
44	Synaptojanin Is Recruited by Endophilin to Promote Synaptic Vesicle Uncoating. Neuron, 2003, 40, 733-748.	3.8	376
45	Mapping Drosophila mutations with molecularly defined P element insertions. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10860-10865.	3.3	89
46	Molecular mechanisms of CNS synaptogenesis. Trends in Neurosciences, 2002, 25, 243-250.	4.2	172
47	Assembling the Presynaptic Active Zone. Neuron, 2001, 29, 131-143.	3.8	372