Martin I Sereno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6031778/publications.pdf

Version: 2024-02-01

105 papers 37,412 citations

³⁸⁷⁴² 50 h-index

100 g-index

114 all docs

114 docs citations

114 times ranked 24616 citing authors

#	Article	IF	Citations
1	Cortical Surface-Based Analysis. Neurolmage, 1999, 9, 179-194.	4.2	9,194
2	Cortical Surface-Based Analysis. Neurolmage, 1999, 9, 195-207.	4.2	5,599
3	High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 1999, 8, 272-284.	3.6	2,757
4	Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science, 1995, 268, 889-893.	12.6	2,447
5	Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach. Journal of Cognitive Neuroscience, 1993, 5, 162-176.	2.3	1,811
6	Voxel-based lesion–symptom mapping. Nature Neuroscience, 2003, 6, 448-450.	14.8	1,283
7	Cortical sources of the early components of the visual evoked potential. Human Brain Mapping, 2002, 15, 95-111.	3.6	957
8	Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 1999, 2, 364-369.	14.8	879
9	Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 2004, 7, 701-702.	14.8	807
10	Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans. Science, 2001, 294, 1350-1354.	12.6	744
11	Functional Analysis of V3A and Related Areas in Human Visual Cortex. Journal of Neuroscience, 1997, 17, 7060-7078.	3.6	742
12	Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. NeuroImage, 2006, 33, 1093-1103.	4.2	681
13	Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature, 1995, 375, 139-141.	27.8	627
14	Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4853-4858.	7.1	586
15	Human cortical representations for reaching: Mirror neurons for execution, observation, and imagery. Neurolmage, 2007, 37, 1315-1328.	4.2	501
16	Functional analysis of primary visual cortex (V1) in humans. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 811-817.	7.1	415
17	Point-Light Biological Motion Perception Activates Human Premotor Cortex. Journal of Neuroscience, 2004, 24, 6181-6188.	3.6	381
18	New images from human visual cortex. Trends in Neurosciences, 1996, 19, 481-489.	8.6	312

#	Article	IF	CITATIONS
19	The Search for "Common Sense― An Electrophysiological Study of the Comprehension of Words and Pictures in Reading. Journal of Cognitive Neuroscience, 1996, 8, 89-106.	2.3	312
20	Semantic integration in reading: engagement of the right hemisphere during discourse processing. Brain, 1999, 122, 1317-1325.	7.6	311
21	Using high-resolution quantitative mapping of R1 as an index of cortical myelination. Neurolmage, 2014, 93, 176-188.	4.2	299
22	A human parietal face area contains aligned head-centered visual and tactile maps. Nature Neuroscience, 2006, 9, 1337-1343.	14.8	289
23	Putting spatial attention on the map: timing and localization of stimulus selection processes in striate and extrastriate visual areas. Vision Research, 2001, 41, 1437-1457.	1.4	284
24	Tonotopic Organization in Human Auditory Cortex Revealed by Progressions of Frequency Sensitivity. Journal of Neurophysiology, 2004, 91, 1282-1296.	1.8	281
25	Location of human face-selective cortex with respect to retinotopic areas. Human Brain Mapping, 1999, 7, 29-37.	3.6	273
26	Wide-Field Retinotopy Defines Human Cortical Visual Area V6. Journal of Neuroscience, 2006, 26, 7962-7973.	3.6	252
27	Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopyâ€. Cerebral Cortex, 2013, 23, 2261-2268.	2.9	236
28	Multiple Parietal Reach Regions in Humans: Cortical Representations for Visual and Proprioceptive Feedback during On-Line Reaching. Journal of Neuroscience, 2009, 29, 2961-2971.	3.6	223
29	Spatial maps in frontal and prefrontal cortex. Neurolmage, 2006, 29, 567-577.	4.2	214
30	<i>In Vivo</i> Functional and Myeloarchitectonic Mapping of Human Primary Auditory Areas. Journal of Neuroscience, 2012, 32, 16095-16105.	3.6	206
31	Human V6: The Medial Motion Area. Cerebral Cortex, 2010, 20, 411-424.	2.9	187
32	From monkeys to humans: what do we now know about brain homologies?. Current Opinion in Neurobiology, 2005, 15, 135-144.	4.2	185
33	Analysis of Retinotopic Maps in Extrastriate Cortex. Cerebral Cortex, 1994, 4, 601-620.	2.9	182
34	Retinotopy and Attention in Human Occipital, Temporal, Parietal, and Frontal Cortex. Cerebral Cortex, 2008, 18, 2158-2168.	2.9	177
35	Parietal and superior frontal visuospatial maps activated by pointing and saccades. NeuroImage, 2007, 35, 1562-1577.	4.2	165
36	Multisensory maps in parietal cortex. Current Opinion in Neurobiology, 2014, 24, 39-46.	4.2	145

#	Article	IF	CITATIONS
37	The human cerebellum has almost 80% of the surface area of the neocortex. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19538-19543.	7.1	117
38	Representation of motion boundaries in retinotopic human visual cortical areas. Nature, 1997, 388, 175-179.	27.8	112
39	Mapping multisensory parietal face and body areas in humans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18114-18119.	7.1	112
40	Fine-Grained Nociceptive Maps in Primary Somatosensory Cortex. Journal of Neuroscience, 2012, 32, 17155-17162.	3.6	108
41	Whole-Brain In-vivo Measurements of the Axonal G-Ratio in a Group of 37 Healthy Volunteers. Frontiers in Neuroscience, 2015, 9, 441.	2.8	97
42	Neural organization for recognition of grammatical and emotional facial expressions in deaf ASL signers and hearing nonsigners. Cognitive Brain Research, 2005, 22, 193-203.	3.0	92
43	Speech versus Song: Multiple Pitch-Sensitive Areas Revealed by a Naturally Occurring Musical Illusion. Cerebral Cortex, 2013, 23, 249-254.	2.9	88
44	Dodecapus: An MR-compatible system for somatosensory stimulation. NeuroImage, 2007, 34, 1060-1073.	4.2	81
45	Four analogies between biological and cultural/linguistic evolution. Journal of Theoretical Biology, 1991, 151, 467-507.	1.7	77
46	Body Topography Parcellates Human Sensory and Motor Cortex. Cerebral Cortex, 2017, 27, 3790-3805.	2.9	75
47	Dissociation of Sensitivity to Spatial Frequency in Word and Face Preferential Areas of the Fusiform Gyrus. Cerebral Cortex, 2011, 21, 2307-2312.	2.9	71
48	Observed, Executed, and Imagined Action Representations can be Decoded From Ventral and Dorsal Areas. Cerebral Cortex, 2015, 25, 3144-3158.	2.9	71
49	Caudal topographic nucleus isthmi and the rostral nontopographic nucleus isthmi in the turtle, pseudemys scripta. Journal of Comparative Neurology, 1987, 261, 319-346.	1.6	69
50	Late Development of Cue Integration Is Linked to Sensory Fusion in Cortex. Current Biology, 2015, 25, 2856-2861.	3.9	59
51	Emergence of Position-Independent Detectors of Sense of Rotation and Dilation with Hebbian Learning: An Analysis. Neural Computation, 1993, 5, 597-612.	2.2	54
52	Functional and Quantitative MRI Mapping of Somatomotor Representations of Human Supralaryngeal Vocal Tract. Cerebral Cortex, 2017, 27, 265-278.	2.9	49
53	Brain mapping in animals and humans. Current Opinion in Neurobiology, 1998, 8, 188-194.	4.2	48
54	Visually-Driven Maps in Area 3b. Journal of Neuroscience, 2018, 38, 1295-1310.	3.6	45

#	Article	IF	Citations
55	The Relation between Connection Length and Degree of Connectivity in Young Adults: A DTI Analysis. Cerebral Cortex, 2009, 19, 554-562.	2.9	44
56	Dorsal and ventral stream activation and object recognition performance in school-age children. Neurolmage, 2011, 57, 659-670.	4.2	44
57	Fine-Grained Mapping of Cortical Somatotopies in Chronic Complex Regional Pain Syndrome. Journal of Neuroscience, 2019, 39, 9185-9196.	3.6	43
58	LSD alters eyes losed functional connectivity within the early visual cortex in a retinotopic fashion. Human Brain Mapping, 2016, 37, 3031-3040.	3.6	42
59	Tectoreticular pathways in the turtle,Pseudemys scripta. I. Morphology of tectoreticular axons. Journal of Comparative Neurology, 1985, 233, 48-90.	1.6	39
60	Bottom-up Retinotopic Organization Supports Top-down Mental Imagery. Open Neuroimaging Journal, 2013, 7, 58-67.	0.2	38
61	Using High Angular Resolution Diffusion Imaging Data to Discriminate Cortical Regions. PLoS ONE, 2013, 8, e63842.	2.5	37
62	Multisensory and sensorimotor maps. Handbook of Clinical Neurology $\!\!\!/$ Edited By P J Vinken and G W Bruyn, 2018, 151, 141-161.	1.8	37
63	Plasticity and its limits. Nature, 2005, 435, 288-289.	27.8	36
64	Detectability of cerebellar activity with magnetoencephalography and electroencephalography. Human Brain Mapping, 2020, 41, 2357-2372.	3.6	36
65	Direction selectivity in the middle lateral and lateral (ML and L) visual areas in the California ground squirrel. Cerebral Cortex, 1998, 8, 362-371.	2.9	33
66	Using diffusion MRI to discriminate areas of cortical grey matter. Neurolmage, 2018, 182, 456-468.	4.2	31
67	Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps. Human Brain Mapping, 2016, 37, 2784-2810.	3.6	30
68	Neural Substrates Underlying the Passive Observation and Active Control of Translational Egomotion. Journal of Neuroscience, 2015, 35, 4258-4267.	3.6	28
69	Extensive Tonotopic Mapping across Auditory Cortex Is Recapitulated by Spectrally Directed Attention and Systematically Related to Cortical Myeloarchitecture. Journal of Neuroscience, 2017, 37, 12187-12201.	3.6	27
70	Microstructural differences in the thalamus and thalamic radiations in the congenitally deaf. NeuroImage, 2014, 100, 347-357.	4.2	26
71	The ventral striatum dissociates information expectation, reward anticipation, and reward receipt. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15200-15208.	7.1	26
72	Modelling the Human Cortex in Three Dimensions. Trends in Cognitive Sciences, 2018, 22, 1073-1075.	7.8	25

#	Article	IF	Citations
73	Rearranging the world: Neural network supporting the processing of temporal connectives. Neurolmage, 2012, 59, 3662-3667.	4.2	24
74	Retinotopic organization of extrastriate cortex in the owl monkeyâ€"dorsal and lateral areas. Visual Neuroscience, 2015, 32, E021.	1.0	24
75	Microstructural parcellation of the human brain. Neurolmage, 2018, 182, 219-231.	4.2	24
76	Reconstructing neural representations of tactile space. Neurolmage, 2021, 229, 117730.	4.2	23
77	Eye position modulates retinotopic responses in early visual areas: a bias for the straight-ahead direction. Brain Structure and Function, 2015, 220, 2587-2601.	2.3	20
78	Mapping the complex topological organization of the human parietal face area. NeuroImage, 2017, 163, 459-470.	4.2	20
79	Tectoreticular pathways in the turtle,Pseudemys scripta. II. Morphology of tectoreticular cells. Journal of Comparative Neurology, 1985, 233, 91-114.	1.6	19
80	Picturing words? Sensorimotor cortex activation for printed words in child and adult readers. Brain and Language, 2014, 139, 58-67.	1.6	19
81	Glassy carbon microelectrodes minimize induced voltages, mechanical vibrations, and artifacts in magnetic resonance imaging. Microsystems and Nanoengineering, 2019, 5, 61.	7.0	19
82	Validation of periodic fMRI signals in response to wearable tactile stimulation. NeuroImage, 2017, 150, 99-111.	4.2	18
83	High-resolution intersubject averaging and a coordinate system for the cortical surface., 1999, 8, 272.		17
84	Current approaches to mapping language in electromagnetic space., 2000,, 359-392.		17
85	Inferior Occipital Gyrus Is Organized along Common Gradients of Spatial and Face-Part Selectivity. Journal of Neuroscience, 2021, 41, 5511-5521.	3.6	16
86	2-D center-surround effects on 3-D structure-from-motion Journal of Experimental Psychology: Human Perception and Performance, 1999, 25, 1834-1854.	0.9	15
87	Topological Maps and Brain Computations From Low to High. Frontiers in Systems Neuroscience, 2022, 16, .	2.5	15
88	A Digital App to Aid Detection, Monitoring, and Management of Dyslexia in Young Children (DIMMAND): Protocol for a Digital Health and Education Solution. JMIR Research Protocols, 2018, 7, e135.	1.0	13
89	Mental processes and strategic equilibration: An fMRI study of selling strategies in second price auctions. Experimental Economics, 2007, 10, 105-122.	2.1	12
90	2-D center-surround effects on 3-D structure-from-motion Journal of Experimental Psychology: Human Perception and Performance, 1999, 25, 1834-1854.	0.9	11

#	Article	IF	CITATIONS
91	Spatiotemporal integration of looming visual and tactile stimuli near the face. Human Brain Mapping, 2018, 39, 2156-2176.	3.6	10
92	Learning of goal-relevant and -irrelevant complex visual sequences in human V1. NeuroImage, 2018, 179, 215-224.	4.2	10
93	Cortical myelination in toddlers and preschoolers with autism spectrum disorder. Developmental Neurobiology, 2022, 82, 261-274.	3.0	10
94	Origin of symbol-using systems: speech, but not sign, without the semantic urge. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130303.	4.0	9
95	Controversial issues in visual cortex mapping: Extrastriate cortex between areas V2 and MT in human and nonhuman primates. Visual Neuroscience, 2015, 32, E025.	1.0	9
96	Unraveling the spatiotemporal brain dynamics during a simulated reach-to-eat task. NeuroImage, 2019, 185, 58-71.	4.2	9
97	Visual stimulus presentation using fiber optics in the MRI scanner. Journal of Neuroscience Methods, 2008, 169, 76-83.	2.5	8
98	A program for the neurobiology of mind. Inquiry (United Kingdom), 1986, 29, 217-240.	0.9	6
99	Altered visual population receptive fields in human albinism. Cortex, 2020, 128, 107-123.	2.4	4
100	Anti-Hebbian synapses as a linear equation solver. , 0, , .		3
101	Visual loss alters multisensory face maps in humans. Brain Structure and Function, 2018, 223, 3731-3738.	2.3	3
102	Multiple b-values improve discrimination of cortical gray matter regions using diffusion MRI: an experimental validation with a data-driven approach. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2021, 34, 677-687.	2.0	2
103	Location of human faceâ€selective cortex with respect to retinotopic areas. Human Brain Mapping, 1999, 7, 29-37.	3.6	2
104	An Unsupervised Group Average Cortical Parcellation Using Diffusion MRI to Probe Cytoarchitecture. Mathematics and Visualization, 2017, , 145-156.	0.6	0
105	Philosophy and the Brain.J. Z. Young , Keith Thomas. Quarterly Review of Biology, 1988, 63, 115-116.	0.1	O