Mariko Kubo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6031664/publications.pdf Version: 2024-02-01

MARIKO KURO

#	Article	IF	CITATIONS
1	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). VI. Distant Filamentary Structures Pointed Out by High-z Radio Galaxies at z â ⁻¹ ⁄4 4. Astrophysical Journal, 2022, 926, 76.	4.5	5
2	Interrelation of the Environment of Lyα Emitters and Massive Galaxies at 2 < z < 4.5. Astrophysical Journal, 2021, 916, 35.	4.5	6
3	ALMA Observations of Lyα Blob 1: Multiple Major Mergers and Widely Distributed Interstellar Media. Astrophysical Journal, 2021, 918, 69.	4.5	3
4	A Massive Quiescent Galaxy Confirmed in a Protocluster at z = 3.09. Astrophysical Journal, 2021, 919, 6.	4.5	24
5	On the Nature of AGN and Star Formation Enhancement in the z = 3.1 SSA22 Protocluster: The HST WFC3 IR View. Astrophysical Journal, 2021, 919, 51.	4.5	8
6	FOREVER22: galaxy formation in protocluster regions. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4037-4057.	4.4	21
7	Testing an indirect method for identifying galaxies with high levels of Lyman continuum leakage. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3095-3114.	4.4	6
8	Quiescent Galaxies 1.5 Billion Years after the Big Bang and Their Progenitors. Astrophysical Journal, 2020, 889, 93.	4.5	117
9	ALMA Deep Field in SSA22. Astronomy and Astrophysics, 2020, 640, L8.	5.1	20
10	The UV Luminosity Function of Protocluster Galaxies at zÂâ^¼Â4: The Bright-end Excess and the Enhanced Star Formation Rate Density. Astrophysical Journal, 2020, 899, 5.	4.5	13
11	Faint Quasars Live in the Same Number Density Environments as Lyman Break Galaxies at zÂâ^1⁄4Â4. Astrophysical Journal, 2020, 905, 125.	4.5	5
12	The Brightest UV-selected Galaxies in Protoclusters at zÂâ^¼Â4: Ancestors of Brightest Cluster Galaxies?. Astrophysical Journal, 2019, 878, 68.	4.5	15
13	Gas filaments of the cosmic web located around active galaxies in a protocluster. Science, 2019, 366, 97-100.	12.6	100
14	Suppression of Low-mass Galaxy Formation around Quasars at zÂâ^¼Â2–3. Astrophysical Journal, 2019, 870, 45.	4.5	11
15	Planck Far-infrared Detection of Hyper Suprime-Cam Protoclusters at zÂâ^1⁄4Â4: Hidden AGN and Star Formation Activity. Astrophysical Journal, 2019, 887, 214.	4.5	23
16	Stellar Velocity Dispersion of a Massive Quenching Galaxy at zÂ=Â4.01. Astrophysical Journal Letters, 2019, 885, L34.	8.3	61
17	ALMA deep field in SSA22: Survey design and source catalog of a 20 arcmin2 survey at 1.1 mm. Publicat of the Astronomical Society of Japan, 2018, 70, .	ion 2.5	30
18	The Rest-frame Optical Sizes of Massive Galaxies with Suppressed Star Formation at zÂâ^1⁄4Â4. Astrophysical Journal, 2018, 867, 1.	4.5	29

Mariko Kubo

#	Article	IF	CITATIONS
19	ALMA Reveals Strong Emission in a Galaxy Embedded in a Giant Lyα Blob at z = 3.1. Astrophysical Journal Letters, 2017, 834, L16.	8.3	17
20	Deep Submillimeter and Radio Observations in the SSA22 Field. I. Powering Sources and the Lyα Escape Fraction of Lyα Blobs. Astrophysical Journal, 2017, 850, 178.	4.5	18
21	ALMA Deep Field in SSA22: Source Catalog and Number Counts. Astrophysical Journal, 2017, 835, 98.	4.5	59
22	ALMA deep field in SSA22: Blindly detected CO emitters and [C <scp>ii</scp>] emitter candidates. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	21
23	Bimodal morphologies of massive galaxies at the core of a protocluster at z = 3.09 and the strong size growth of a brightest cluster galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2235-2250.	4.4	14
24	MORPHOLOGIES OF â^¼ 190,000 GALAXIES AT zÂ=Â0–10 REVEALED WITH HST LEGACY DATA. II. EVOLUTION CLUMPY GALAXIES. Astrophysical Journal, 2016, 821, 72.	OF 4.5	95
25	ALMA observations of a <i>z</i> â‰^ 3.1 protocluster: star formation from active galactic nuclei and Lyman-alpha blobs in an overdense environment. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2944-2952.	4.4	21
26	ALMA OBSERVATIONS OF LyÎ \pm BLOB 1: HALO SUBSTRUCTURE ILLUMINATED FROM WITHIN. Astrophysical Journal, 2016, 832, 37.	4.5	35
27	An extremely dense group of massive galaxies at the centre of the protocluster at <i>z</i> = 3.09 in the SSA22 field. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3333-3344.	4.4	25
28	ALMA DEEP FIELD IN SSA22: A CONCENTRATION OF DUSTY STARBURSTS IN A <i>z</i> = 3.09 PROTOCLUSTER CORE. Astrophysical Journal Letters, 2015, 815, L8.	8.3	89
29	NIR SPECTROSCOPIC OBSERVATION OF MASSIVE GALAXIES IN THE PROTOCLUSTER AT <i>z</i> = 3.09. Astrophysical Journal, 2015, 799, 38.	4.5	42
30	AzTEC/ASTE 1.1-mm survey of SSA22: Counterpart identification and photometric redshift survey of submillimetre galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3462-3478.	4.4	48
31	THE FORMATION OF THE MASSIVE GALAXIES IN THE SSA22 <i>z</i> = 3.1 PROTOCLUSTER. Astrophysical Journal, 2013, 778, 170.	4.5	49
32	ASSEMBLY OF MASSIVE GALAXIES IN A HIGH- <i>z</i> PROTOCLUSTER. Astrophysical Journal, 2012, 750, 116.	4.5	36