Spencer D Proctor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6031194/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of De Novo Ceramide Synthesis Reverses Diet-Induced Insulin Resistance and Enhances Whole-Body Oxygen Consumption. Diabetes, 2010, 59, 2453-2464.	0.3	296
2	Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovascular Pathology, 2006, 15, 318-330.	0.7	272
3	Effects of Ruminant trans Fatty Acids on Cardiovascular Disease and Cancer: A Comprehensive Review of Epidemiological, Clinical, and Mechanistic Studies. Advances in Nutrition, 2011, 2, 332-354.	2.9	216
4	Human health benefits of vaccenic acid. Applied Physiology, Nutrition and Metabolism, 2009, 34, 979-991.	0.9	211
5	Arterial retention of apolipoprotein B48- and B100-containing lipoproteins in atherogenesis. Current Opinion in Lipidology, 2002, 13, 461-470.	1.2	173
6	Brain inflammation is induced by co-morbidities and risk factors for stroke. Brain, Behavior, and Immunity, 2011, 25, 1113-1122.	2.0	173
7	Impaired de Novo Choline Synthesis Explains Why Phosphatidylethanolamine N-Methyltransferase-deficient Mice Are Protected from Diet-induced Obesity. Journal of Biological Chemistry, 2010, 285, 22403-22413.	1.6	168
8	Trans-11 Vaccenic Acid Dietary Supplementation Induces Hypolipidemic Effects in JCR:LA-cp Rats. Journal of Nutrition, 2008, 138, 2117-2122.	1.3	143
9	Delayed Administration of Interleukin-1 Receptor Antagonist Reduces Ischemic Brain Damage and Inflammation in Comorbid Rats. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1810-1819.	2.4	122
10	Deficiency of carboxylesterase 1/esterase-x results in obesity, hepatic steatosis, and hyperlipidemia. Hepatology, 2012, 56, 2188-2198.	3.6	117
11	Intimal Retention of Cholesterol Derived From Apolipoprotein B100– and Apolipoprotein B48–Containing Lipoproteins in Carotid Arteries of Watanabe Heritable Hyperlipidemic Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1595-1600.	1.1	115
12	Hypoxia-Induced Intrauterine Growth Restriction Increases the Susceptibility of Rats to High-Fat Diet–Induced Metabolic Syndrome. Diabetes, 2011, 60, 507-516.	0.3	115
13	Both Intestinal and Hepatic Lipoprotein Production Are Stimulated by an Acute Elevation of Plasma Free Fatty Acids in Humans. Circulation, 2008, 117, 2369-2376.	1.6	100
14	Retention of chylomicron remnants by arterial tissue; importance of an efficient clearance mechanism from plasma. Atherosclerosis, 1998, 141, S63-S69.	0.4	95
15	Arterial Permeability and Efflux of Apolipoprotein B–Containing Lipoproteins Assessed by In Situ Perfusion and Three-Dimensional Quantitative Confocal Microscopy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2162-2167.	1.1	88
16	Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Science, 2020, 165, 108114.	2.7	81
17	Vaccenic acid favourably alters immune function in obese JCR:LA- cp rats. British Journal of Nutrition, 2009, 102, 526.	1.2	76
18	Understanding Postprandial Inflammation and Its Relationship to Lifestyle Behaviour and Metabolic Diseases, International Journal of Vascular Medicine, 2012, 2012, 1-11.	0.4	72

SPENCER D PROCTOR

#	Article	IF	CITATIONS
19	Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in a rat model of NAFLD and metabolic syndrome. Journal of Nutritional Biochemistry, 2014, 25, 692-701.	1.9	62
20	Dietary supplementation of nâ€3 PUFA reduces weight gain and improves postprandial lipaemia and the associated inflammatory response in the obese JCR:LAâ€cp rat. Diabetes, Obesity and Metabolism, 2010, 12, 139-147.	2.2	61
21	The role of ruminant trans fat as a potential nutraceutical in the prevention of cardiovascular disease. Food Research International, 2012, 46, 460-468.	2.9	61
22	Trans-11 Vaccenic Acid Reduces Hepatic Lipogenesis and Chylomicron Secretion in JCR:LA-cp Rats. Journal of Nutrition, 2009, 139, 2049-2054.	1.3	59
23	Chronic dietary <i>n</i> -3 PUFA intervention improves dyslipidaemia and subsequent cardiovascular complications in the JCR:LA- <i>cp</i> rat model of the metabolic syndrome. British Journal of Nutrition, 2011, 105, 1572-1582.	1.2	54
24	A Highly Sensitive Assay for Quantitation of Apolipoprotein B48 Using an Antibody to Human Apolipoprotein B and Enhanced Chemiluminescence. Annals of Clinical Biochemistry, 1997, 34, 185-189.	0.8	52
25	A Unique Rodent Model of Cardiometabolic Risk Associated with the Metabolic Syndrome and Polycystic Ovary Syndrome. Endocrinology, 2009, 150, 4425-4436.	1.4	46
26	Choline Supplementation Protects against Liver Damage by Normalizing Cholesterol Metabolism in Pemt/Ldlr Knockout Mice Fed a High-Fat Diet. Journal of Nutrition, 2014, 144, 252-257.	1.3	46
27	Hypersensitivity of Prediabetic JCR:LA-cp Rats to Fine Airborne Combustion Particle-Induced Direct and Noradrenergic-Mediated Vascular Contraction. Toxicological Sciences, 2006, 90, 385-391.	1.4	44
28	Increased hypolipidemic benefits of cis-9, trans-11 conjugated linoleic acid in combination with trans-11 vaccenic acid in a rodent model of the metabolic syndrome, the JCR:LA-cp rat. Nutrition and Metabolism, 2010, 7, 60.	1.3	39
29	Choline deficiency impairs intestinal lipid metabolism in the lactating rat. Journal of Nutritional Biochemistry, 2015, 26, 1077-1083.	1.9	38
30	The intestinal bioavailability of vaccenic acid and activation of peroxisome proliferatorâ€activated receptorâ€Î± and â€Î³ in a rodent model of dyslipidemia and the metabolic syndrome. Molecular Nutrition and Food Research, 2012, 56, 1234-1246.	1.5	37
31	Nutritional and Lipid Modulation of PCSK9: Effects on Cardiometabolic Risk Factors. Journal of Nutrition, 2017, 147, 473-481.	1.3	32
32	The Effect of PCSK9 Loss-of-Function Variants on the Postprandial Lipid and ApoB-Lipoprotein Response. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3452-3460.	1.8	32
33	Current issues surrounding the definition of trans-fatty acids: implications for health, industry and food labels. British Journal of Nutrition, 2013, 110, 1369-1383.	1.2	31
34	Elevated 20-HETE impairs coronary collateral growth in metabolic syndrome via endothelial dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H528-H540.	1.5	31
35	Intestinal lipid transport and chylomicron production: Possible links to exacerbated atherogenesis in a rodent model of the metabolic syndrome. Atherosclerosis Supplements, 2008, 9, 69-76.	1.2	30
36	Resistance exercise but not aerobic exercise lowers remnant-like lipoprotein particle cholesterol in type 2 diabetes: A randomized controlled trial. Atherosclerosis, 2010, 213, 552-557.	0.4	30

#	Article	IF	CITATIONS
37	Vaccenic acid suppresses intestinal inflammation by increasing anandamide and related N-acylethanolamines in the JCR:LA-cp rat. Journal of Lipid Research, 2016, 57, 638-649.	2.0	30
38	Dietary fish oil reduces glomerular injury and elevated renal hydroxyeicosatetraenoic acid levels in the JCR:LA- <i>cp</i> rat, a model of the metabolic syndrome. British Journal of Nutrition, 2013, 110, 11-19.	1.2	27
39	<i>Trans</i> â€11 vaccenic acid improves insulin secretion in models of type 2 diabetes in vivo and in vitro. Molecular Nutrition and Food Research, 2016, 60, 846-857.	1.5	26
40	Impaired ApoB-Lipoprotein and Triglyceride Metabolism in Obese Adolescents with Polycystic Ovary Syndrome Journal of Clinical Endocrinology and Metabolism, 2016, 102, jc.2016-2854.	1.8	25
41	IS ATHEROSCLEROSIS EXCLUSIVELY A POSTPRANDIAL PHENOMENON? Clinical and Experimental Pharmacology and Physiology, 1997, 24, 288-293.	0.9	24
42	Simvastatin treatment upregulates intestinal lipid secretion pathways in a rodent model of the metabolic syndrome. Atherosclerosis, 2014, 232, 141-148.	0.4	24
43	Feeding long-chain n-3 polyunsaturated fatty acids to obese leptin receptor-deficient JCR:LA-cp rats modifies immune function and lipid-raft fatty acid composition. British Journal of Nutrition, 2009, 101, 1341.	1.2	23
44	miRâ€21 normalizes vascular smooth muscle proliferation and improves coronary collateral growth in metabolic syndrome. FASEB Journal, 2014, 28, 4088-4099.	0.2	23
45	Elevated 20-HETE in metabolic syndrome regulates arterial stiffness and systolic hypertension via MMP12 activation. Journal of Molecular and Cellular Cardiology, 2018, 117, 88-99.	0.9	23
46	ApoA-1 infusion reduces arterial cholesterol and myocardial lesions in a rat model of cardiac dysfunction and insulin resistance. Atherosclerosis, 2012, 222, 402-408.	0.4	22
47	Overeating by Young Obesityâ€prone and Lean Rats Caused by Tastes Associated With Low Energy Foods. Obesity, 2007, 15, 1969-1979.	1.5	20
48	Metabolic effects of a novel silicate inositol complex of the nitric oxide precursor arginine in the obese insulin-resistant JCR:LA-cp rat. Metabolism: Clinical and Experimental, 2007, 56, 1318-1325.	1.5	18
49	Vaccenic and Elaidic Acid Modify Plasma and Splenocyte Membrane Phospholipids and Mitogen-Stimulated Cytokine Production in Obese Insulin Resistant JCR: LA-cp Rats. Nutrients, 2010, 2, 181-197.	1.7	18
50	Hypolipidemic and cardioprotective benefits of a novel fireberry hawthorn fruit extract in the JCR:LA-cp rodent model of dyslipidemia and cardiac dysfunction. Food and Function, 2016, 7, 3943-3952.	2.1	18
51	Cardiovascular function in male and female JCR:LA-cp rats: effect of high-fat/high-sucrose diet. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H742-H751.	1.5	18
52	Beneficial effects of vaccenic acid on postprandial lipid metabolism and dyslipidemia: Impact of natural <i>trans</i> â€fats to improve CVD risk. Lipid Technology, 2010, 22, 103-106.	0.3	17
53	New Insights Into How the Intestine Can Regulate Lipid Homeostasis and Impact Vascular Disease: Frontiers for New Pharmaceutical Therapies to Lower Cardiovascular Disease Risk. Canadian Journal of Cardiology, 2011, 27, 183-191.	0.8	17
54	Arterial Retention of Remnant Lipoproteins Ex Vivo Is Increased in Insulin Resistance Because of Increased Arterial Biglycan and Production of Cholesterolâ€Rich Atherogenic Particles That Can Be Improved by Ezetimibe in the JCR:LA― <i>cp</i> Rat. Journal of the American Heart Association, 2012, 1, e003434.	1.6	17

SPENCER D PROCTOR

#	Article	IF	CITATIONS
55	Rimonabant-mediated changes in intestinal lipid metabolism and improved renal vascular dysfunction in the JCR:LA- <i>cp</i> rat model of prediabetic metabolic syndrome. American Journal of Physiology - Renal Physiology, 2010, 299, G507-G516.	1.6	16
56	Pair feeding-mediated changes in metabolism: stress response and pathophysiology in insulin-resistant, atherosclerosis-prone JCR:LA-cp rats. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E1078-E1087.	1.8	15
57	The Interplay of Obesity, Dyslipidemia and Immune Dysfunction: A Brief Overview on Pathophysiology, Animal Models, and Nutritional Modulation. Frontiers in Nutrition, 2022, 9, 840209.	1.6	15
58	Pioglitazone inhibits HIF-1α-dependent angiogenesis in rats by paracrine and direct effects on endothelial cells. Journal of Molecular Medicine, 2014, 92, 497-507.	1.7	14
59	miR-21-mediated decreased neutrophil apoptosis is a determinant of impaired coronary collateral growth in metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1323-H1335.	1.5	13
60	Low birth weight causes insulin resistance and aberrant intestinal lipid metabolism independent of microbiota abundance in Landrace–Large White pigs. FASEB Journal, 2019, 33, 9250-9262.	0.2	13
61	Impaired Postprandial Metabolism of Apolipoprotein B48-Containing Remnant Particles in Normolipidemic Subjects With Brittle Type 1 Diabetes. Diabetes Care, 2009, 32, e21-e21.	4.3	12
62	Mechanisms of Comorbidities Associated With the Metabolic Syndrome: Insights from the JCR:LA-cp Corpulent Rat Strain. Frontiers in Nutrition, 2016, 3, 44.	1.6	12
63	ApoB48-remnant lipoproteins are associated with increased cardiometabolic risk in adolescents. Atherosclerosis, 2020, 302, 20-26.	0.4	12
64	Postprandial lipemia as an early predictor of cardiovascular complications in childhood obesity. Journal of Clinical Lipidology, 2009, 3, 78-84.	0.6	11
65	Accumulation of ceramide in slowâ€ŧwitch muscle contributes to the development of insulin resistance in the obese JCR:LA p rat. Experimental Physiology, 2015, 100, 730-741.	0.9	10
66	Cardiometabolic and reproductive benefits of early dietary energy restriction and voluntary exercise in an obese PCOS-prone rodent model. Journal of Endocrinology, 2015, 226, 193-206.	1.2	10
67	Adiposity in Children and CVD Risk: ApoB48 Has a Stronger Association With Central Fat Than Classic Lipid Markers. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2915-2922.	1.8	10
68	Beef Fat Enriched with Polyunsaturated Fatty Acid Biohydrogenation Products Improves Insulin Sensitivity Without Altering Dyslipidemia in Insulin Resistant JCR:LAâ€ <i>cp</i> Rats. Lipids, 2016, 51, 821-831.	0.7	10
69	ApoB48-Lipoproteins Are Associated with Cardiometabolic Risk in Adolescents with and without Polycystic Ovary Syndrome. Journal of the Endocrine Society, 2020, 4, bvaa061.	0.1	9
70	Influence of metabolic syndrome on post-stroke outcome, angiogenesis and vascular function in old rats determined by dynamic contrast enhanced MRI. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1692-1706.	2.4	9
71	Down-regulation of hypothalamic pro-opiomelanocortin (POMC) expression after weaning is associated with hyperphagia-induced obesity in JCR rats overexpressing neuropeptide Y. British Journal of Nutrition, 2014, 111, 924-932.	1.2	7
72	Feeding History and Obeseâ€Prone Genotype Increase Survival of Rats Exposed to a Challenge of Food Restriction and Wheel Running. Obesity, 2012, 20, 1787-1795.	1.5	6

#	Article	IF	CITATIONS
73	Prior caloric restriction increases survival of prepubertal obese- and PCOS-prone rats exposed to a challenge of time-limited feeding and physical activity. Journal of Applied Physiology, 2013, 114, 1158-1164.	1.2	6
74	Improving beef hamburger quality and fatty acid profiles through dietary manipulation and exploitation of fat depot heterogeneity. Journal of Animal Science and Biotechnology, 2014, 5, 54.	2.1	6
75	Intestinal lymphatic HDL miRâ€223 and ApoAâ€I are reduced during insulin resistance and restored with niacin. FASEB Journal, 2018, 32, 1602-1612.	0.2	6
76	<scp>ApoBâ€lipoprotein</scp> remnant dyslipidemia and <scp>highâ€fat</scp> meal intolerance is associated with markers of cardiometabolic risk in youth with obesity. Pediatric Obesity, 2021, 16, e12745.	1.4	6
77	The Influence of Diet and Sex on the Gut Microbiota of Lean and Obese JCR:LA-cp Rats. Microorganisms, 2021, 9, 1037.	1.6	6
78	High Vaccenic Acid Content in Beef Fat Attenuates High Fat and High Carbohydrate Western Diet Induced Changes in Lipid Metabolism and Gut Microbiota in Pigs. Microorganisms, 2021, 9, 2517.	1.6	5
79	Novel Aspects of Nonfasting Lipemia in relation to Vascular Biology. International Journal of Vascular Medicine, 2012, 2012, 1-2.	0.4	4
80	Interrelationship of CB1R and OBR pathways in regulation of metabolic, neuroendocrine, and behavioral responses to food restriction and voluntary wheel running. Journal of Applied Physiology, 2014, 117, 97-104.	1.2	4
81	Cardiomyocyte Antihypertrophic Effect of Adipose Tissue Conditioned Medium from Rats and Its Abrogation by Obesity is Mediated by the Leptin to Adiponectin Ratio. PLoS ONE, 2016, 11, e0145992.	1.1	4
82	Long-Term Catheterization of the Intestinal Lymph Trunk and Collection of Lymph in Neonatal Pigs. Journal of Visualized Experiments, 2016, , .	0.2	4
83	A Pilot Trial: Fish Oil and Metformin Effects on ApoB-Remnants and Triglycerides in Women With Polycystic Ovary Syndrome. Journal of the Endocrine Society, 2021, 5, bvab114.	0.1	4
84	Dietary flaxseed reduces Myocardial Ischemic Lesions, improves cardiac function and lowers cholesterol levels despite the presence of severe obesity in JCR:LA-cp Rats. Journal of Nutritional Biochemistry, 2021, 98, 108829.	1.9	4
85	Effect of High-Fat and Low-Fat Dairy Products on Cardiometabolic Risk Factors and Immune Function in a Low Birthweight Swine Model of Diet-Induced Insulin Resistance. Frontiers in Nutrition, 0, 9, .	1.6	4
86	Chylomicron Remnants and Atherosclerosis. , 0, , 109-138.		2
87	Emerging pathways in the regulation of whole body cholesterol flux: therapeutic opportunities to target atherosclerosis?. Journal of Lipid Research, 2014, 55, 796-797.	2.0	1
88	Macro- and Microvascular Disease in an Insulin-Resistant Pre-Diabetic Animal Model. , 2008, , 137-166.		1
89	Intestinal postprandial chylomicrons: state of the union between liver, gut and dyslipidemia?. Future Lipidology, 2008, 3, 473-480.	0.5	0