Pauli Kehayias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6031147/publications.pdf

Version: 2024-02-01

34	2,073	21	32
papers	citations	h-index	g-index
35	35	35	2373
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The GENIE neutrino Monte Carlo generator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 614, 87-104.	1.6	618
2	Micrometerâ€scale magnetic imaging of geological samples using a quantum diamond microscope. Geochemistry, Geophysics, Geosystems, 2017, 18, 3254-3267.	2.5	131
3	Principles and techniques of the quantum diamond microscope. Nanophotonics, 2019, 8, 1945-1973.	6.0	123
4	Cavity-Enhanced Room-Temperature Magnetometry Using Absorption by Nitrogen-Vacancy Centers in Diamond. Physical Review Letters, 2014, 112, 160802.	7.8	112
5	Ultralong Dephasing Times in Solid-State Spin Ensembles via Quantum Control. Physical Review X, 2018, 8, .	8.9	100
6	Detection of nanoscale electron spin resonance spectra demonstrated using nitrogen-vacancy centre probes in diamond. Nature Communications, 2016, 7, 10211.	12.8	89
7	Optical polarization of nuclear ensembles in diamond. Physical Review B, 2013, 87, .	3.2	82
8	Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor. Science Advances, 2019, 5, eaaw7895.	10.3	78
9	Diamond magnetometer enhanced by ferrite flux concentrators. Physical Review Research, 2020, 2, .	3.6	78
10	A hadronization model for few-GeV neutrino interactions. European Physical Journal C, 2009, 63, 1-10.	3.9	63
11	Infrared absorption band and vibronic structure of the nitrogen-vacancy center in diamond. Physical Review B, 2013, 88, .	3.2	61
12	Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip. Nature Communications, 2017, 8, 188.	12.8	60
13	Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity. Physical Review B, 2013, 87, .	3.2	57
14	Longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. EPJ Quantum Technology, 2015, 2, .	6.3	56
15	Imaging crystal stress in diamond using ensembles of nitrogen-vacancy centers. Physical Review B, 2019, 100, .	3.2	51
16	Diamond Magnetic Microscopy of Malarial Hemozoin Nanocrystals. Physical Review Applied, 2019, 11, .	3.8	48
17	Magnetic Field Fingerprinting of Integrated-Circuit Activity with a Quantum Diamond Microscope. Physical Review Applied, 2020, 14, .	3.8	37
18	Microwave saturation spectroscopy of nitrogen-vacancy ensembles in diamond. Physical Review B, 2014, 89, .	3.2	36

#	Article	IF	CITATIONS
19	Evaluating the paleomagnetic potential of single zircon crystals using the Bishop Tuff. Earth and Planetary Science Letters, 2017, 458, 1-13.	4.4	33
20	Secondary magnetic inclusions in detrital zircons from the Jack Hills, Western Australia, and implications for the origin of the geodynamo. Geology, 2018, 46, 427-430.	4.4	27
21	Coherent population oscillations with nitrogen-vacancy color centers in diamond. Physical Review B, 2016, 94, .	3.2	22
22	Weak Magnetic Fields in the Outer Solar Nebula Recorded in CR Chondrites. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006260.	3.6	22
23	Magnetometry with Nitrogen-Vacancy Centers in Diamond. Smart Sensors, Measurement and Instrumentation, 2017, , 553-576.	0.6	19
24	Microwave-Assisted Spectroscopy Technique for Studying Charge State in Nitrogen-Vacancy Ensembles in Diamond. Physical Review Applied, 2020, 14, .	3.8	15
25	Diamond-Based Magnetic Imaging with Fourier Optical Processing. Physical Review Applied, 2017, 8, .	3.8	11
26	Nanoscale solid-state nuclear quadrupole resonance spectroscopy using depth-optimized nitrogen-vacancy ensembles in diamond. Applied Physics Letters, 2022, 120, .	3.3	11
27	A Hadronization Model for the MINOS Experiment. AIP Conference Proceedings, 2007, , .	0.4	8
28	A physically unclonable function using NV diamond magnetometry and micromagnet arrays. Journal of Applied Physics, 2020, 127, 203904.	2.5	7
29	Measurement and Simulation of the Magnetic Fields from a 555 Timer Integrated Circuit Using a Quantum Diamond Microscope and Finite-Element Analysis. Physical Review Applied, 2022, 17, .	3.8	7
30	Optically detected magnetic resonances of nitrogen-vacancy ensembles in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi mathvariant="normal">C</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn>13</mml:mn></mml:mmultiscripts></mml:math> -enriched diamond. Physical Review B, 2016,	3.2	6
31	94, . A fitting algorithm for optimizing ion implantation energies and fluences. Nuclear Instruments & Methods in Physics Research B, 2021, 500-501, 52-56.	1.4	4
32	Can Zircons be Suitable Paleomagnetic Recorders? - A Correlative Study of Bishop Tuff Zircon Grains Using High Resolution Lab X-ray Microscopes and a Quantum Diamond Microscope. Microscopy and Microanalysis, 2016, 22, 1794-1795.	0.4	1
33	Fourier Optical Processing Enables New Capabilities in Opto-Magnetic Imaging Using Nitrogen-Vacancy Centers in Diamond. , 2018, , .		0
34	Magnetic imaging of malarial nanocrystals with diamond sensors. , 2019, , .		0