Andreas Jechow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6030765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Systematic Review for Establishing Relevant Environmental Parameters for Urban Lighting: Translating Research into Practice. Sustainability, 2022, 14, 1107.	3.2	18
2	Is Heralded Two-Photon Excited Fluorescence with Single Absorbers Possible with Current Technology?. Photonics, 2022, 9, 52.	2.0	0
3	Nocturnal lighting in animal research should be replicable and reflect relevant ecological conditions. Biology Letters, 2022, 18, 20220035.	2.3	17
4	Spatial and seasonal patterns of water isotopes in northeastern German lakes. Earth System Science Data, 2022, 14, 1857-1867.	9.9	2
5	The rising moon promotes mate finding in moths. Communications Biology, 2022, 5, 393.	4.4	5
6	Multiple Angle Observations Would Benefit Visible Band Remote Sensing Using Night Lights. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	15
7	Assessing longâ€ŧerm effects of artificial light at night on insects: what is missing and how to get there. Insect Conservation and Diversity, 2021, 14, 260-270.	3.0	31
8	The Use of Sentinel-2 for Chlorophyll-a Spatial Dynamics Assessment: A Comparative Study on Different Lakes in Northern Germany. Remote Sensing, 2021, 13, 1542.	4.0	21
9	Impact of Different Wavelengths of Artificial Light at Night on Phototaxis in Aquatic Insects. Integrative and Comparative Biology, 2021, 61, 1182-1190.	2.0	20
10	11 Pressing Research Questions on How Light Pollution Affects Biodiversity. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	64
11	Design and implementation of an illumination system to mimic skyglow at ecosystem level in a large-scale lake enclosure facility. Scientific Reports, 2021, 11, 23478.	3.3	4
12	Towards Insect-Friendly Road Lighting—A Transdisciplinary Multi-Stakeholder Approach Involving Citizen Scientists. Insects, 2021, 12, 1117.	2.2	4
13	Remote sensing of night lights: A review and an outlook for the future. Remote Sensing of Environment, 2020, 237, 111443.	11.0	442
14	Commentary: Brightness of the Night Sky Affects Loggerhead (Caretta caretta) Sea Turtle Hatchling Misorientation but Not Nest Site Selection. Frontiers in Marine Science, 2020, 7, .	2.5	6
15	Evidence That Reduced Air and Road Traffic Decreased Artificial Night-Time Skyglow during COVID-19 Lockdown in Berlin, Germany. Remote Sensing, 2020, 12, 3412.	4.0	29
16	Performance of the Landsat 8 Provisional Aquatic Reflectance Product for Inland Waters. Remote Sensing, 2020, 12, 2410.	4.0	8
17	Introducing the dark sky unit for multi-spectral measurement of the night sky quality with commercial digital cameras. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107162.	2.3	23
18	Night Matters—Why the Interdisciplinary Field of "Night Studies―Is Needed. J, 2020, 3, 1-6.	0.9	26

ANDREAS JECHOW

#	Article	IF	CITATIONS
19	Mapping the brightness and color of urban to rural skyglow with all-sky photometry. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 250, 106988.	2.3	39
20	How dark is a river? Artificial light at night in aquatic systems and the need for comprehensive nightâ€ŧime light measurements. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1388.	6.5	45
21	Snowglow—The Amplification of Skyglow by Snow and Clouds can Exceed Full Moon Illuminance in Suburban Areas. Journal of Imaging, 2019, 5, 69.	3.0	31
22	Beyond All-Sky: Assessing Ecological Light Pollution Using Multi-Spectral Full-Sphere Fisheye Lens Imaging. Journal of Imaging, 2019, 5, 46.	3.0	61
23	Observing the Impact of WWF Earth Hour on Urban Light Pollution: A Case Study in Berlin 2018 Using Differential Photometry. Sustainability, 2019, 11, 750.	3.2	28
24	Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas. Scientific Reports, 2019, 9, 1391.	3.3	46
25	Light Pollution, Circadian Photoreception, and Melatonin in Vertebrates. Sustainability, 2019, 11, 6400.	3.2	126
26	Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 209, 212-223.	2.3	72
27	Measuring night sky brightness: methods and challenges. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 205, 278-290.	2.3	197
28	Artificial Light at Night Affects Emergence from a Refuge and Space Use in Guppies. Scientific Reports, 2018, 8, 14131.	3.3	38
29	Frequency doubling of incoherent light from a superluminescent diode in a periodically poled lithium niobate waveguide crystal. Laser Physics Letters, 2017, 14, 055402.	1.4	8
30	Second-order coherence properties of amplified spontaneous emission from a high-power tapered superluminescent diode. Laser Physics Letters, 2017, 14, 086201.	1.4	8
31	Imaging and mapping the impact of clouds on skyglow with all-sky photometry. Scientific Reports, 2017, 7, 6741.	3.3	65
32	Artificially lit surface of Earth at night increasing in radiance and extent. Science Advances, 2017, 3, e1701528.	10.3	560
33	Measuring Light Pollution with Fisheye Lens Imagery from A Moving Boat – A Proof of Concept. International Journal of Sustainable Lighting, 2017, 19, 15-25.	1.9	27
34	Evaluating the summer night sky brightness at a research field site on Lake Stechlin in northeastern Germany. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 181, 24-32.	2.3	33
35	Mode stabilization of a laterally structured broad area diode laser using an external volume Bragg grating. Optics Express, 2015, 23, 12394.	3.4	11
36	Impact of Photon Statistics on Two-Photon Excited Fluorescence. , 2014, , .		0

ANDREAS JECHOW

#	Article	IF	CITATIONS
37	Broad area diode laser with on-chip transverse Bragg grating stabilized in an off-axis external cavity. Optics Express, 2014, 22, 14108.	3.4	7
38	Multi-Wavelength Operation of a Single Broad Area Diode Laser by Spectral Beam Combining. IEEE Photonics Technology Letters, 2014, 26, 253-256.	2.5	13
39	Investigation of the Second-order Coherence Properties of Amplified Spontaneous Emission from Superluminescent Diodes. , 2014, , .		1
40	Self-Organized Emitters in a Single Broad Area Diode Laser by Wavelength-Selective Feedback. , 2014, , .		0
41	High-Flux Biphoton Source for Two-Photon Excited Fluorescence. , 2014, , .		0
42	Enhanced two-photon excited fluorescence from imaging agents using true thermal light. Nature Photonics, 2013, 7, 973-976.	31.4	64
43	Imaging a single atom's absorption and phase shift. , 2013, , .		0
44	Controllable Optical Phase Shift Over One Radian from a Single Isolated Atom. Physical Review Letters, 2013, 110, 113605.	7.8	13
45	Large optical phase shift from a single trapped atomic ion. , 2013, , .		0
46	Enhancing two-photon excited fluorescence by using thermal light. , 2013, , .		0
47	Single-atom absorption imaging. , 2012, , .		0
48	Multi-wavelength, high spatial brightness operation of a phase-locked stripe-array diode laser. Laser Physics, 2012, 22, 160-164.	1.2	6
49	Absorption imaging of a single atom. Nature Communications, 2012, 3, 933.	12.8	46
50	Wavelength-scale imaging of trapped ions using a phase Fresnel lens. Optics Letters, 2011, 36, 1371.	3.3	39
51	Millikelvin spatial thermometry of trapped ions. New Journal of Physics, 2011, 13, 113022.	2.9	13
52	Imaging of Trapped Ions with a Microfabricated Optic for Quantum Information Processing. Physical Review Letters, 2011, 106, 010502.	7.8	76
53	Imaging the temperature of trapped ions. , 2011, , .		0
54	High-power ultrafast laser source with 300 MHz repetition rate for trapped-ion quantum logic. , 2011, ,		0

ANDREAS JECHOW

#	Article	IF	CITATIONS
55	A high-power ultrafast laser source with 300 MHz repetition rate for trapped-ion quantum logic. , 2011, , .		0
56	Single-atom absorption imaging. , 2011, , .		0
57	Imaging of trapped ions with wavelength-scale resolution using a microfabricated optic. , 2011, , .		0
58	Coupled ring resonator geometry for efficient second harmonic generation. , 2011, , .		0
59	High-Resolution Imaging of Trapped Ions for Scalable Quantum Computing. , 2011, , .		0
60	Imaging the Temperature of Laser-Cooled Ions. , 2011, , .		0
61	Single-Atom Absorption Imaging. , 2011, , .		0
62	Scalable imaging of trapped ions. , 2011, , .		0
63	Quasi-monolithic ring resonator for efficient frequency doubling of an external cavity diode laser. Applied Physics B: Lasers and Optics, 2010, 98, 751-757.	2.2	2
64	Blueâ€green light generation using high brilliance edge emitting diode lasers. Laser and Photonics Reviews, 2010, 4, 633-655.	8.7	33
65	High-brightness emission from stripe-array broad area diode lasers operated in off-axis external cavities. , 2010, , .		3
66	Efficient second-harmonic generation using a semiconductor tapered amplifier in a coupled ring-resonator geometry. Optics Letters, 2010, 35, 232.	3.3	14
67	Self-Formation and Synchronization of Emitters in Broad Area Lasers in External Cavities. , 2010, , .		0
68	Tunable diode laser based biphoton source for quantum spectroscopy. , 2009, , .		0
69	Monolithic ring resonator with PPLN crystal for efficient cw SHG of 976 nm emitted by a diode laser. , 2009, , .		0
70	Highly efficient single-pass blue-light generation at 488 nm using a PPKTP waveguide crystal and high-brightness diode lasers. , 2009, , .		2
71	Stripe-array diode-laser in an off-axis external cavity: Theory and experiment. Optics Express, 2009, 17, 19599.	3.4	43
72	Quasi monolithic ring resonator for efficient SHG of 488 nm. , 2009, , .		0

Quasi monolithic ring resonator for efficient SHG of 488 nm. , 2009, , . 72

Andreas Jechow

#	Article	IF	CITATIONS
73	Monolithic SHG ring resonator passively coupled to an external cavity enhanced broad area laser diode. , 2009, , .		1
74	Highly efficient visible light generation at 488 nm using high brilliance laser diodes and periodically poled materials. , 2009, , .		0
75	High brightness, tunable diode laser based continuous-wave biphoton source for two photon absorption at 976 nm. , 2009, , .		0
76	Tunable 68 W narrow bandwidth emission from a single-stripe continuous-wave broad-area laser diode in a simple external cavity. Applied Optics, 2008, 47, 1447.	2.1	13
77	High brightness, tunable biphoton source at 976 nm for quantum spectroscopy. Optics Express, 2008, 16, 13439.	3.4	18
78	Highly efficient tunable blue light generation using an external cavity enhanced gain guided broad area laser diode. , 2008, , .		0
79	52%-efficient single-pass SHG in a PPLN waveguide by frequency doubling of a cw-DFB RW laser diode. , 2008, , .		Ο
80	142 mW tunable blue light generation at 488 nm by single-pass SHG of an external cavity enhanced broad-area laser diode. , 2008, , .		1
81	High Efficient Single Pass Second Harmonic Generation of a Broad Area Laser Diode in an External Cavity using a PPLN Waveguide Crystal. , 2007, , .		Ο
82	Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488 nm. Optics Letters, 2007, 32, 3035.	3.3	46
83	100 mW high efficient single pass SHG at 488 nm of a single broad area laser diode with external cavity using a PPLN waveguide crystal. Optics Express, 2007, 15, 6976.	3.4	16
84	Tunable diffraction-limited light at 488 nm by single-pass frequency doubling of a broad area diode laser. Applied Optics, 2007, 46, 943.	2.1	6
85	1W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7MHz. Optics Communications, 2007, 277, 161-165.	2.1	55
86	Generation of 25ps pulses by self induced mode locking of a single broad area diode laser with 300mW average output power. Optics Communications, 2007, 279, 341-345.	2.1	1
87	Efficient blue light generation by frequency doubling of a broad-area diode laser in a compact external cavity. Applied Physics B: Lasers and Optics, 2007, 89, 507-511.	2.2	18
88	High cw power using an external cavity for spectral beam combining of diode laser-bar emission. Applied Optics, 2006, 45, 3545.	2.1	30
89	High brilliance phase coupled broad area diode lasers in a compact external cavity with longitudinal and spatial singlemode operation and 500 mW power. , 0, , .		0
90	Tunable cw-diode laser for 940 to 990 nm with over 700mw of near-diffraction limited light. , 0, , .		0

#	Article	IF	CITATIONS
91	High Brightness High Brilliance Tunable Broad Area Diode Laser with 1 W of Near Diffraction Limited Light. , 0, , .		Ο
92	Spectral Beam Combining of 25 Diode Lasers to get 10 W cw emission. , 0, , .		0