Pushpal Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6030683/publications.pdf Version: 2024-02-01

DUCHDAL CHOCH

#	Article	IF	CITATIONS
1	Multifunctional Lanthanide-Doped Binary Fluorides and Graphene Oxide Nanocomposites Via a Task-Specific Ionic Liquid. ACS Omega, 2022, 7, 16906-16916.	1.6	5
2	Temperature dependent quantum cutting in cubic BaGdF ₅ :Eu ³⁺ nanophosphors. New Journal of Chemistry, 2021, 45, 1463-1473.	1.4	5
3	Lanthanide-Doped Luminescent Nanophosphors via Ionic Liquids. Frontiers in Chemistry, 2021, 9, 715531.	1.8	16
4	A closer look at the defects and luminescence of nanocrystalline fluorides synthesized <i>via</i> ionic liquids: the case of Ce ³⁺ -doped BaF ₂ . New Journal of Chemistry, 2020, 44, 200-209.	1.4	10
5	The nano-bio interactions of rare-earth doped BaF ₂ nanophosphors shape the developmental processes of zebrafish. Biomaterials Science, 2020, 8, 6730-6740.	2.6	5
6	Green EmittingCe ³⁺ / Tb ³⁺ â€Doped BaF ₂ Nanocrystals and Their Impact on Skeletal Muscle of Developing Zebrafish Larvae. ChemistrySelect, 2020, 5, 9105-9110.	0.7	4
7	Influence of ionic liquids and concentration of red phosphorous on luminescent Cu3P nanocrystals. Journal of Chemical Sciences, 2019, 131, 1.	0.7	4
8	Eu-Doped BaF ₂ Nanoparticles for Bioimaging Applications. ACS Applied Nano Materials, 2019, 2, 927-936.	2.4	19
9	Imidazolium Based Ionic Liquids: A Promising Green Solvent for Water Hyacinth Biomass Deconstruction. Frontiers in Chemistry, 2018, 6, 548.	1.8	41
10	Tuning the Crystal Phase and Morphology of the Photoluminescent Indium Sulphide Nanocrystals and Their Adsorptionâ€Based Catalytic and Photocatalytic Applications. ChemistrySelect, 2018, 3, 8171-8182.	0.7	8
11	Recent trends in binary and ternary rare-earth fluoride nanophosphors: How structural and physical properties influence optical behavior. Journal of Luminescence, 2017, 189, 44-63.	1.5	83
12	Adsorption-Driven Catalytic and Photocatalytic Activity of Phase Tuned In ₂ S ₃ Nanocrystals Synthesized via Ionic Liquids. ACS Applied Materials & Interfaces, 2017, 9, 11651-11661.	4.0	51
13	Size of the rare-earth ions: a key factor in phase tuning and morphology control of binary and ternary rare-earth fluoride materials. RSC Advances, 2017, 7, 33467-33476.	1.7	24
14	Phase selective synthesis of quantum cutting nanophosphors and the observation of a spontaneous room temperature phase transition. Nanoscale, 2016, 8, 8160-8169.	2.8	32
15	Highly Luminescent Salts Containing Well-Shielded Lanthanide-Centered Complex Anions and Bulky Imidazolium Countercations. Inorganic Chemistry, 2014, 53, 9027-9035.	1.9	28
16	Nanofluorides for Environmentally Benign Lighting and Energy Conversion in Solar Cells. ACS Symposium Series, 2011, , 87-99.	0.5	2
17	Efficient quantum cutting in hexagonal NaGdF4:Eu3+ nanorods. Journal of Materials Chemistry, 2011, 21, 8640.	6.7	57
18	Structural Changes and Spectroscopic Properties of Ce3+-Ion-Doped Sodium Yttrium Fluoride Nanocrystals: Influences of Sonication and Temperature. Journal of Physical Chemistry C, 2010, 114, 715-722.	1.5	28

PUSHPAL GHOSH

#	Article	IF	CITATIONS
19	Energy transfer study between Ce3+ and Tb3+ ions in doped and core-shell sodium yttrium fluoride nanocrystals. Nanoscale, 2010, 2, 1196.	2.8	86
20	Synthesis and characterization of different shaped Sm ₂ O ₃ nanocrystals. Journal Physics D: Applied Physics, 2010, 43, 405401.	1.3	33
21	Structural and photoluminescence properties of doped and core-shell LaPO4:Eu3+ nanocrystals. Journal of Applied Physics, 2010, 108, .	1.1	51
22	Influence of surface coating on the upconversion emission properties of LaPO4:Yb/Tm core-shell nanorods. Journal of Applied Physics, 2009, 105, 113532.	1.1	39
23	Upconversion emission of BaTiO3: Er nanocrystals. Bulletin of Materials Science, 2008, 31, 461-465.	0.8	30
24	Enhancement of Upconversion Emission of LaPO ₄ :Er@Yb Coreâ^'Shell Nanoparticles/Nanorods. Journal of Physical Chemistry C, 2008, 112, 9650-9658.	1.5	153
25	Tuning of Crystal Phase and Luminescence Properties of Eu ³⁺ Doped Sodium Yttrium Fluoride Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 3223-3231.	1.5	103
26	Influence of Crystal Phase and Excitation Wavelength on Luminescence Properties of Eu ³⁺ -Doped Sodium Yttrium Fluoride Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 19283-19292.	1.5	87
27	Crystal Phase, Shape and Luminescence Properties of LaPO ₄ :Eu ³⁺ Nanocrystals. Journal of Nanoscience and Nanotechnology, 2008, 8, 3458-3464.	0.9	21
28	Influence of Surface Coating on Physical Properties of TiO2/Eu3+Nanocrystals. Journal of Physical Chemistry C, 2007, 111, 7004-7010.	1.5	47
29	Understanding the Local Structures of Eu and Zr in Eu2O3Doped and Coated ZrO2Nanocrystals by EXAFS Study. Journal of Physical Chemistry C, 2007, 111, 571-578.	1.5	47
30	Study of photophysical properties of capped CdS nanocrystals. Journal of Luminescence, 2007, 124, 327-332.	1.5	38
31	Preparation and photoluminescence properties of Y2SiO5:Eu3+ nanocrystals. Physical Chemistry Chemical Physics, 2006, 8, 3342.	1.3	42
32	Role of Surface Coating in ZrO2/Eu3+Nanocrystals. Langmuir, 2006, 22, 6321-6327.	1.6	74
33	Understanding the influence of nanoenvironment on luminescence of rare-earth ions. Pramana - Journal of Physics, 2005, 65, 901-907.	0.9	5
34	Red to Blue Tunable Upconversion in Tm3+-Doped ZrO2Nanocrystals. Journal of Physical Chemistry B, 2005, 109, 10142-10146.	1.2	74