
Phillip Kantharidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/603049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymmetric Synthesis and Biological Screening of Quinoxaline-Containing Synthetic Lipoxin A ₄ Mimetics (QNX-sLXms). Journal of Medicinal Chemistry, 2021, 64, 9193-9216.	6.4	18
2	Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nature Reviews Nephrology, 2021, 17, 725-739.	9.6	85
3	Potential Targeting of Renal Fibrosis in Diabetic Kidney Disease Using MicroRNAs. Frontiers in Pharmacology, 2020, 11, 587689.	3.5	20
4	Therapeutic Potential of Lipoxin A ₄ in Chronic Inflammation: Focus on Cardiometabolic Disease. ACS Pharmacology and Translational Science, 2020, 3, 43-55.	4.9	40
5	Specialized pro-resolving mediators in diabetes: novel therapeutic strategies. Clinical Science, 2019, 133, 2121-2141.	4.3	12
6	Lipoxins Regulate the Early Growth Response–1 Network and Reverse Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 1437-1448.	6.1	48
7	RAGE Deletion Confers Renoprotection by Reducing Responsiveness to Transforming Growth Factor-Î ² and Increasing Resistance to Apoptosis. Diabetes, 2018, 67, 960-973.	0.6	23
8	Perinatal exposure to high dietary advanced glycation end products in transgenic NOD8.3 mice leads to pancreatic beta cell dysfunction. Islets, 2018, 10, 10-24.	1.8	23
9	The Use of Targeted Next Generation Sequencing to Explore Candidate Regulators of TGF-β1's Impact on Kidney Cells. Frontiers in Physiology, 2018, 9, 1755.	2.8	8
10	Lipoxins Protect Against Inflammation in Diabetes-Associated Atherosclerosis. Diabetes, 2018, 67, 2657-2667.	0.6	60
11	Protective Effect of let-7 miRNA Family in Regulating Inflammation in Diabetes-Associated Atherosclerosis. Diabetes, 2017, 66, 2266-2277.	0.6	130
12	Increased liver AGEs induce hepatic injury mediated through an OST48 pathway. Scientific Reports, 2017, 7, 12292.	3.3	22
13	Diabetic Nephropathy: Proteinuria, Inflammation, and Fibrosis. Journal of Diabetes Research, 2016, 2016, 1-2.	2.3	30
14	<i>miR-21</i> promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clinical Science, 2015, 129, 1237-1249.	4.3	192
15	Study of micro <scp>RNA</scp> in diabetic nephropathy: Isolation, quantification and biological function. Nephrology, 2015, 20, 132-139.	1.6	15
16	Transcriptome-Based Analysis of Kidney Gene Expression Changes Associated with Diabetes in OVE26 Mice, in the Presence and Absence of Losartan Treatment. PLoS ONE, 2014, 9, e96987.	2.5	12
17	microRNA in the development of diabetic complications. Clinical Science, 2014, 126, 95-110.	4.3	130
18	Where are we in diabetic nephropathy. Current Opinion in Nephrology and Hypertension, 2014, 23, 80-86.	2.0	29

Phillip Kantharidis

#	Article	IF	CITATIONS
19	Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney International, 2014, 85, 352-361.	5.2	153
20	Ramipril inhibits AGE-RAGE-induced matrix metalloproteinase-2 activation in experimental diabetic nephropathy. Diabetology and Metabolic Syndrome, 2014, 6, 86.	2.7	29
21	microRNA as Biomarkers and Regulator of Cardiovascular Development and Disease. Current Pharmaceutical Design, 2014, 20, 2347-2370.	1.9	16
22	MicroRNA in Diabetic Nephropathy: Renin Angiotensin, AGE/RAGE, and Oxidative Stress Pathway. Journal of Diabetes Research, 2013, 2013, 1-11.	2.3	46
23	Suppression of microRNA-29 Expression by TGF-β1 Promotes Collagen Expression and Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2012, 23, 252-265.	6.1	450
24	Advanced Glycation End Products as Environmental Risk Factors for the Development of Type 1 Diabetes. Current Drug Targets, 2012, 13, 526-540.	2.1	18
25	What Are New Avenues for Renal Protection, in Addition to RAAS Inhibition?. Current Hypertension Reports, 2012, 14, 100-110.	3.5	10
26	Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. Biomaterials, 2012, 33, 970-978.	11.4	78
27	The role of EMT in renal fibrosis. Cell and Tissue Research, 2012, 347, 103-116.	2.9	249
28	TGF-β Regulates miR-206 and miR-29 to Control Myogenic Differentiation through Regulation of HDAC4. Journal of Biological Chemistry, 2011, 286, 13805-13814.	3.4	237
29	Diabetes Complications: The MicroRNA Perspective. Diabetes, 2011, 60, 1832-1837.	0.6	258
30	Osteoprotegerin promotes vascular fibrosis via a TGF-β1 autocrine loop. Atherosclerosis, 2011, 218, 61-68.	0.8	51
31	miR-200a Prevents Renal Fibrogenesis Through Repression of TGF-β2 Expression. Diabetes, 2011, 60, 280-287.	0.6	311
32	Dedifferentiation of Immortalized Human Podocytes in Response to Transforming Growth Factor-β. Diabetes, 2011, 60, 1779-1788.	0.6	107
33	E-Cadherin Expression Is Regulated by miR-192/215 by a Mechanism That Is Independent of the Profibrotic Effects of Transforming Growth Factor-Î ² . Diabetes, 2010, 59, 1794-1802.	0.6	235
34	Quantitative Gene Expression Analysis in Kidney Tissues. Methods in Molecular Biology, 2009, 466, 83-107.	0.9	1
35	Connective Tissue Growth Factor Plays an Important Role in Advanced Glycation End Product–Induced Tubular Epithelial-to-Mesenchymal Transition. Journal of the American Society of Nephrology: JASN, 2006, 17, 2484-2494.	6.1	238
36	C-Terminal Domain of Insulin-Like Growth Factor (IGF) Binding Protein-6: Structure and Interaction with IGF-II. Molecular Endocrinology, 2004, 18, 2740-2750.	3.7	44

PHILLIP KANTHARIDIS

#	Article	IF	CITATIONS
37	The Role of Advanced Glycation in Reduced Organic Cation Transport Associated with Experimental Diabetes. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 456-466.	2.5	46
38	1H, 13C and 15N resonance assignments of the C-terminal domain of insulin-like growth factor binding protein-6 (IGFBP-6). Journal of Biomolecular NMR, 2003, 25, 251-252.	2.8	5
39	Reduced tubular cation transport in diabetes: Prevented by ACE inhibition. Kidney International, 2003, 63, 2152-2161.	5.2	50
40	Precipitous Release of Methyl-CpG Binding Protein 2 and Histone Deacetylase 1 from the Methylated Human Multidrug Resistance Gene (MDR1) on Activation. Molecular and Cellular Biology, 2002, 22, 1844-1857.	2.3	177
41	Regulation of MDR1 gene expression: emerging concepts. Drug Resistance Updates, 2000, 3, 99-108.	14.4	25
42	Physical Mapping of a Tandem Duplication on the Long Arm of Chromosome 7 Associated with a Multidrug Resistant Phenotype. Cancer Genetics and Cytogenetics, 1999, 110, 28-33.	1.0	10
43	Altered Multidrug Resistance Phenotype Caused by Anthracycline Analogues and Cytosine Arabinoside in Myeloid Leukemia. Blood, 1999, 93, 4086-4095.	1.4	3
44	Sequential Extraction of DNA and DNA-Binding Proteins from Low Cell Numbers. BioTechniques, 1997, 22, 645-648.	1.8	1
45	Nucleotide sequence of uk bovine rotavirus segment 4: Possible host restriction of VP3 genes. Virology, 1988, 166, 308-315.	2.4	54