Phillip Kantharidis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/603049/publications.pdf

Version: 2024-02-01

45 papers

3,799 citations

218677 26 h-index 243625 44 g-index

45 all docs

45 docs citations

45 times ranked

5873 citing authors

#	Article	IF	Citations
1	Suppression of microRNA-29 Expression by TGF- \hat{l}^21 Promotes Collagen Expression and Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2012, 23, 252-265.	6.1	450
2	miR-200a Prevents Renal Fibrogenesis Through Repression of TGF-Î ² 2 Expression. Diabetes, 2011, 60, 280-287.	0.6	311
3	Diabetes Complications: The MicroRNA Perspective. Diabetes, 2011, 60, 1832-1837.	0.6	258
4	The role of EMT in renal fibrosis. Cell and Tissue Research, 2012, 347, 103-116.	2.9	249
5	Connective Tissue Growth Factor Plays an Important Role in Advanced Glycation End Product–Induced Tubular Epithelial-to-Mesenchymal Transition. Journal of the American Society of Nephrology: JASN, 2006, 17, 2484-2494.	6.1	238
6	TGF- \hat{l}^2 Regulates miR-206 and miR-29 to Control Myogenic Differentiation through Regulation of HDAC4. Journal of Biological Chemistry, 2011, 286, 13805-13814.	3.4	237
7	E-Cadherin Expression Is Regulated by miR-192/215 by a Mechanism That Is Independent of the Profibrotic Effects of Transforming Growth Factor- \hat{I}^2 . Diabetes, 2010, 59, 1794-1802.	0.6	235
8	<i>miR-21</i> promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clinical Science, 2015, 129, 1237-1249.	4.3	192
9	Precipitous Release of Methyl-CpG Binding Protein 2 and Histone Deacetylase 1 from the Methylated Human Multidrug Resistance Gene (MDR1) on Activation. Molecular and Cellular Biology, 2002, 22, 1844-1857.	2.3	177
10	Transforming growth factor- \hat{l}^21 -mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney International, 2014, 85, 352-361.	5 . 2	153
11	microRNA in the development of diabetic complications. Clinical Science, 2014, 126, 95-110.	4.3	130
12	Protective Effect of let-7 miRNA Family in Regulating Inflammation in Diabetes-Associated Atherosclerosis. Diabetes, 2017, 66, 2266-2277.	0.6	130
13	Dedifferentiation of Immortalized Human Podocytes in Response to Transforming Growth Factor- \hat{l}^2 . Diabetes, 2011, 60, 1779-1788.	0.6	107
14	Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nature Reviews Nephrology, 2021, 17, 725-739.	9.6	85
15	Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. Biomaterials, 2012, 33, 970-978.	11.4	78
16	Lipoxins Protect Against Inflammation in Diabetes-Associated Atherosclerosis. Diabetes, 2018, 67, 2657-2667.	0.6	60
17	Nucleotide sequence of uk bovine rotavirus segment 4: Possible host restriction of VP3 genes. Virology, 1988, 166, 308-315.	2.4	54
18	Osteoprotegerin promotes vascular fibrosis via a TGF- \hat{l}^21 autocrine loop. Atherosclerosis, 2011, 218, 61-68.	0.8	51

#	Article	IF	CITATIONS
19	Reduced tubular cation transport in diabetes: Prevented by ACE inhibition. Kidney International, 2003, 63, 2152-2161.	5.2	50
20	Lipoxins Regulate the Early Growth Response–1 Network and Reverse Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 1437-1448.	6.1	48
21	The Role of Advanced Glycation in Reduced Organic Cation Transport Associated with Experimental Diabetes. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 456-466.	2.5	46
22	MicroRNA in Diabetic Nephropathy: Renin Angiotensin, AGE/RAGE, and Oxidative Stress Pathway. Journal of Diabetes Research, 2013, 2013, 1-11.	2.3	46
23	C-Terminal Domain of Insulin-Like Growth Factor (IGF) Binding Protein-6: Structure and Interaction with IGF-II. Molecular Endocrinology, 2004, 18, 2740-2750.	3.7	44
24	Therapeutic Potential of Lipoxin A ₄ in Chronic Inflammation: Focus on Cardiometabolic Disease. ACS Pharmacology and Translational Science, 2020, 3, 43-55.	4.9	40
25	Diabetic Nephropathy: Proteinuria, Inflammation, and Fibrosis. Journal of Diabetes Research, 2016, 2016, 1-2.	2.3	30
26	Where are we in diabetic nephropathy. Current Opinion in Nephrology and Hypertension, 2014, 23, 80-86.	2.0	29
27	Ramipril inhibits AGE-RAGE-induced matrix metalloproteinase-2 activation in experimental diabetic nephropathy. Diabetology and Metabolic Syndrome, 2014, 6, 86.	2.7	29
28	Regulation of MDR1 gene expression: emerging concepts. Drug Resistance Updates, 2000, 3, 99-108.	14.4	25
29	RAGE Deletion Confers Renoprotection by Reducing Responsiveness to Transforming Growth Factor- \hat{l}^2 and Increasing Resistance to Apoptosis. Diabetes, 2018, 67, 960-973.	0.6	23
30	Perinatal exposure to high dietary advanced glycation end products in transgenic NOD8.3 mice leads to pancreatic beta cell dysfunction. Islets, 2018, 10, 10-24.	1.8	23
31	Increased liver AGEs induce hepatic injury mediated through an OST48 pathway. Scientific Reports, 2017, 7, 12292.	3.3	22
32	Potential Targeting of Renal Fibrosis in Diabetic Kidney Disease Using MicroRNAs. Frontiers in Pharmacology, 2020, 11, 587689.	3.5	20
33	Advanced Glycation End Products as Environmental Risk Factors for the Development of Type 1 Diabetes. Current Drug Targets, 2012, 13 , 526 - 540 .	2.1	18
34	Asymmetric Synthesis and Biological Screening of Quinoxaline-Containing Synthetic Lipoxin A ₄ Mimetics (QNX-sLXms). Journal of Medicinal Chemistry, 2021, 64, 9193-9216.	6.4	18
35	microRNA as Biomarkers and Regulator of Cardiovascular Development and Disease. Current Pharmaceutical Design, 2014, 20, 2347-2370.	1.9	16
36	Study of micro <scp>RNA</scp> in diabetic nephropathy: Isolation, quantification and biological function. Nephrology, 2015, 20, 132-139.	1.6	15

3

#	Article	IF	CITATIONS
37	Transcriptome-Based Analysis of Kidney Gene Expression Changes Associated with Diabetes in OVE26 Mice, in the Presence and Absence of Losartan Treatment. PLoS ONE, 2014, 9, e96987.	2.5	12
38	Specialized pro-resolving mediators in diabetes: novel therapeutic strategies. Clinical Science, 2019, 133, 2121-2141.	4.3	12
39	Physical Mapping of a Tandem Duplication on the Long Arm of Chromosome 7 Associated with a Multidrug Resistant Phenotype. Cancer Genetics and Cytogenetics, 1999, 110, 28-33.	1.0	10
40	What Are New Avenues for Renal Protection, in Addition to RAAS Inhibition?. Current Hypertension Reports, 2012, 14, 100-110.	3.5	10
41	The Use of Targeted Next Generation Sequencing to Explore Candidate Regulators of TGF-β1's Impact on Kidney Cells. Frontiers in Physiology, 2018, 9, 1755.	2.8	8
42	1H, 13C and 15N resonance assignments of the C-terminal domain of insulin-like growth factor binding protein-6 (IGFBP-6). Journal of Biomolecular NMR, 2003, 25, 251-252.	2.8	5
43	Altered Multidrug Resistance Phenotype Caused by Anthracycline Analogues and Cytosine Arabinoside in Myeloid Leukemia. Blood, 1999, 93, 4086-4095.	1.4	3
44	Sequential Extraction of DNA and DNA-Binding Proteins from Low Cell Numbers. BioTechniques, 1997, 22, 645-648.	1.8	1
45	Quantitative Gene Expression Analysis in Kidney Tissues. Methods in Molecular Biology, 2009, 466, 83-107.	0.9	1