
Panagiotis Papageorgis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6030228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histone N-terminal acetyltransferase NAA40 links one-carbon metabolism to chemoresistance. Oncogene, 2022, 41, 571-585.	2.6	8
2	Evaluating Pancreatic and Biliary Neoplasms with Small Biopsy-Based Next Generation Sequencing (NGS): Doing More with Less. Cancers, 2022, 14, 397.	1.7	11
3	Multidrug-Resistant Bacteria on Healthcare Workers' Uniforms in Hospitals and Long-Term Care Facilities in Cyprus. Antibiotics, 2022, 11, 49.	1.5	3
4	Immunogenic Cell Death, DAMPs and Prothymosin $\hat{I}\pm$ as a Putative Anticancer Immune Response Biomarker. Cells, 2022, 11, 1415.	1.8	34
5	Normalizing the Microenvironment Overcomes Vessel Compression and Resistance to Nanoâ€immunotherapy in Breast Cancer Lung Metastasis. Advanced Science, 2021, 8, 2001917.	5.6	52
6	The Role of Tumor Microenvironment in Cancer Metastasis: Molecular Mechanisms and Therapeutic Opportunities. Cancers, 2021, 13, 2053.	1.7	143
7	Association Between Aggressive Clinicopathologic Features of Papillary Thyroid Carcinoma and Body Mass Index: A Systematic Review and Meta-Analysis. Frontiers in Endocrinology, 2021, 12, 692879.	1.5	12
8	Common Genetic Aberrations Associated with Metabolic Interferences in Human Type-2 Diabetes and Acute Myeloid Leukemia: A Bioinformatics Approach. International Journal of Molecular Sciences, 2021, 22, 9322.	1.8	3
9	Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers, 2021, 13, 4363.	1.7	123
10	The Role of Tumor-Associated Myeloid Cells in Modulating Cancer Therapy. Frontiers in Oncology, 2020, 10, 899.	1.3	44
11	Targeting RICTOR Sensitizes SMAD4-Negative Colon Cancer to Irinotecan. Molecular Cancer Research, 2020, 18, 414-423.	1.5	12
12	TGF-Î ² inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity. Theranostics, 2020, 10, 1910-1922.	4.6	110
13	VL30 retrotransposition is associated with induced EMT, CSC generation and tumorigenesis in HC11 mouse mammary stemâ€ʻlike epithelial cells. Oncology Reports, 2020, 44, 126-138.	1.2	5
14	Depletion of Ras Suppressor-1 (RSU-1) promotes cell invasion of breast cancer cells through a compensatory upregulation of a truncated isoform. Scientific Reports, 2019, 9, 10050.	1.6	10
15	Dexamethasone Increases Cisplatin-Loaded Nanocarrier Delivery and Efficacy in Metastatic Breast Cancer by Normalizing the Tumor Microenvironment. ACS Nano, 2019, 13, 6396-6408.	7.3	97
16	NAA40 contributes to colorectal cancer growth by controlling PRMT5 expression. Cell Death and Disease, 2019, 10, 236.	2.7	35
17	MicroRNA-4417 is a tumor suppressor and prognostic biomarker for triple-negative breast cancer. Cancer Biology and Therapy, 2019, 20, 1113-1120.	1.5	19
18	Activin A Signaling Regulates IL13Rα2 Expression to Promote Breast Cancer Metastasis. Frontiers in Oncology, 2019, 9, 32.	1.3	33

PANAGIOTIS PAPAGEORGIS

#	Article	IF	CITATIONS
19	Mechanisms of Metastatic Tumor Dormancy and Implications for Cancer Therapy. International Journal of Molecular Sciences, 2019, 20, 6158.	1.8	56
20	Solid Stress Facilitates Fibroblasts Activation to Promote Pancreatic Cancer Cell Migration. Annals of Biomedical Engineering, 2018, 46, 657-669.	1.3	71
21	Stress alleviation strategy in cancer treatment: Insights from a mathematical model. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2018, 98, 2295-2306.	0.9	13
22	Molecular Mechanisms and Emerging Therapeutic Targets of Triple-Negative Breast Cancer Metastasis. Frontiers in Oncology, 2018, 8, 31.	1.3	115
23	The concept of ageing in evolutionary algorithms: Discussion and inspirations for human ageing. Mechanisms of Ageing and Development, 2017, 163, 8-14.	2.2	4
24	Tranilast-induced stress alleviation in solid tumors improves the efficacy of chemo- and nanotherapeutics in a size-independent manner. Scientific Reports, 2017, 7, 46140.	1.6	87
25	Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy. Journal of Controlled Release, 2017, 261, 105-112.	4.8	71
26	Pirfenidone normalizes the tumor microenvironment to improve chemotherapy. Oncotarget, 2017, 8, 24506-24517.	0.8	132
27	Complex Interplay Between Aging and Cancer: Role of TGF-β Signaling. Critical Reviews in Oncogenesis, 2017, 22, 313-321.	0.2	11
28	Abstract A60: Hyaluronan and cancer cell derived swelling of solid tumors and implications for cancer therapy. , 2017, , .		0
29	Hyaluronan-Derived Swelling of Solid Tumors, the Contribution of Collagen and Cancer Cells, and Implications for Cancer Therapy. Neoplasia, 2016, 18, 732-741.	2.3	87
30	SDPR functions as a metastasis suppressor in breast cancer by promoting apoptosis. Proceedings of the United States of America, 2016, 113, 638-643.	3.3	66
31	Multiscale modelling of solid tumour growth: the effect of collagen micromechanics. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1079-1090.	1.4	16
32	Tumor Cell-Derived Periostin Regulates Cytokines That Maintain Breast Cancer Stem Cells. Molecular Cancer Research, 2016, 14, 103-113.	1.5	46
33	Role of TGFβ in regulation of the tumor microenvironment and drug delivery (Review). International Journal of Oncology, 2015, 46, 933-943.	1.4	160
34	Remodeling Components of the Tumor Microenvironment to Enhance Cancer Therapy. Frontiers in Oncology, 2015, 5, 214.	1.3	96
35	TGF <i>β</i> Signaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis. Journal of Oncology, 2015, 2015, 1-15.	0.6	177
36	TGFÎ ² and BMP signaling in cancer. , 2015, , 204-221.		1

PANAGIOTIS PAPAGEORGIS

#	Article	IF	CITATIONS
37	Remodeling of extracellular matrix due to solid stress accumulation during tumor growth. Connective Tissue Research, 2015, 56, 345-354.	1.1	16
38	Targeting IL13Ralpha2 activates STAT6-TP63 pathway to suppress breast cancer lung metastasis. Breast Cancer Research, 2015, 17, 98.	2.2	76
39	Role of Constitutive Behavior and Tumor-Host Mechanical Interactions in the State of Stress and Growth of Solid Tumors. PLoS ONE, 2014, 9, e104717.	1.1	82
40	d-alpha-tocopheryl polyethylene glycol succinate (TPGS) induces cell cycle arrest and apoptosis selectively in Survivin-overexpressing breast cancer cells. Biochemical Pharmacology, 2014, 89, 31-42.	2.0	107
41	Reversal of ER-β silencing by chromatin modifying agents overrides acquired tamoxifen resistance. Cancer Letters, 2013, 337, 167-176.	3.2	13
42	Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophrenia Research, 2011, 129, 183-190.	1.1	170
43	Smad4 Inactivation Promotes Malignancy and Drug Resistance of Colon Cancer. Cancer Research, 2011, 71, 998-1008.	0.4	170
44	Smad Signaling Is Required to Maintain Epigenetic Silencing during Breast Cancer Progression. Cancer Research, 2010, 70, 968-978.	0.4	162
45	Abstract 187: Epigenetic memory during breast cancer progression is sustained by Smad signaling pathway. , 2010, , .		0
46	hBub1 deficiency triggers a novel p53 mediated early apoptotic checkpoint pathway in mitotic spindle damaged cells. Cancer Biology and Therapy, 2009, 8, 627-635.	1.5	11
47	hBub1 negatively regulates p53 mediated early cell death upon mitotic checkpoint activation. Cancer Biology and Therapy, 2009, 8, 636-644.	1.5	11
48	Aberrant activation of Î ³ -catenin promotes genomic instability and oncogenic effects during tumor progression. Cancer Biology and Therapy, 2007, 6, 1638-1643.	1.5	33
49	Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Human Molecular Genetics, 2006, 15, 3132-3145.	1.4	433
50	Cancer metastasis. , 0, , 282-294.		1

Cancer metastasis. , 0, , 282-294. 50