Shan Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6029026/shan-wang-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 1,849 15 30 h-index g-index citations papers 4.82 30 11 2,252 L-index ext. citations ext. papers avg, IF

#	Paper	IF	Citations
26	Electropolymerization of Metal Clusters Establishing a Versatile Platform for Enhanced Catalysis Performance <i>Angewandte Chemie - International Edition</i> , 2022 , e202114538	16.4	1
25	Electrochemical sensing platform for the detection of methyl parathion applying highly biocompatible non-covalent functionalized phosphonium-based ionic liquid@MWCNTs hybrid to immobilize hemoglobin. <i>Biosensors and Bioelectronics</i> , 2022 , 197, 113755	11.8	3
24	Silver Cluster-Porphyrin-Assembled Materials as Advanced Bioprotective Materials for Combating Superbacteria. <i>Advanced Science</i> , 2021 , e2103721	13.6	7
23	Hydrazone connected stable luminescent covalent-organic polymer for ultrafast detection of nitro-explosives <i>RSC Advances</i> , 2021 , 11, 39270-39277	3.7	3
22	Aqueous media ultra-sensitive detection of antibiotics via highly stable luminescent 3D Cadmium-based MOF. <i>New Journal of Chemistry</i> , 2021 , 45, 20887-20894	3.6	3
21	Integrating Single Atoms with Different Microenvironments into One Porous Organic Polymer for Efficient Photocatalytic CO Reduction. <i>Advanced Materials</i> , 2021 , 33, e2101568	24	17
20	Irradiation technology: An effective and promising strategy for eliminating food allergens. <i>Food Research International</i> , 2021 , 148, 110578	7	1
19	-Carborane-Based and Atomically Precise Metal Clusters as Hypergolic Materials. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12010-12014	16.4	32
18	Prefabricated covalent organic framework nanosheets with double vacancies: anchoring Cu for highly efficient photocatalytic H2 evolution. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 25094-25100	13	20
17	Fabrication of silver chalcogenolate cluster hybrid membranes with enhanced structural stability and luminescence efficiency. <i>Chemical Communications</i> , 2019 , 55, 14677-14680	5.8	11
16	MetalBrganic framework-derived Co9S8 embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7389-7395	13	65
15	Design and synthesis of metal hydroxide three-dimensional inorganic cationic frameworks. <i>Dalton Transactions</i> , 2018 , 47, 3339-3345	4.3	1
14	Covalent organic frameworks: a platform for the experimental establishment of the influence of intermolecular distance on phosphorescence. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 5369-5374	7.1	33
13	Encapsulating [MoS] clusters in cationic covalent organic frameworks: enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst. <i>Chemical Communications</i> , 2018 , 54, 13563-13566	5.8	133
12	Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4258-4261	16.4	549
11	A facile method to prepare energetic materials (EMs). RSC Advances, 2017, 7, 48161-48165	3.7	4
10	A Heat-Resistant and Energetic Metal-Organic Framework Assembled by Chelating Ligand. <i>ACS Applied Materials & Description of the Appli</i>	9.5	32

LIST OF PUBLICATIONS

9	Explosives in the Cage: Metal-Organic Frameworks for High-Energy Materials Sensing and Desensitization. <i>Advanced Materials</i> , 2017 , 29, 1701898	24	90
8	Explosives: Metal-Organic Framework Templated Synthesis of Copper Azide as the Primary Explosive with Low Electrostatic Sensitivity and Excellent Initiation Ability (Adv. Mater. 28/2016). <i>Advanced Materials</i> , 2016 , 28, 5766	24	3
7	Metal-Organic Framework Templated Synthesis of Copper Azide as the Primary Explosive with Low Electrostatic Sensitivity and Excellent Initiation Ability. <i>Advanced Materials</i> , 2016 , 28, 5837-43	24	81
6	Partitioning MOF-5 into Confined and Hydrophobic Compartments for Carbon Capture under Humid Conditions. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10100-3	16.4	159
5	Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4259-63	16.4	191
4	Photoinduced Postsynthetic Polymerization of a Metal®rganic Framework toward a Flexible Stand-Alone Membrane. <i>Angewandte Chemie</i> , 2015 , 127, 4333-4337	3.6	50
3	Titelbild: Photoinduced Postsynthetic Polymerization of a Metal®rganic Framework toward a Flexible Stand-Alone Membrane (Angew. Chem. 14/2015). <i>Angewandte Chemie</i> , 2015 , 127, 4199-4199	3.6	
2	A Tale of Copper Coordination Frameworks: Controlled Single-Crystal-to-Single-Crystal Transformations and Their Catalytic C-H Bond Activation Properties. <i>Chemistry - A European Journal</i> , 2015 , 21, 13894-9	4.8	18
1	Tuning the luminescence of metal-organic frameworks for detection of energetic heterocyclic compounds. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15485-8	16.4	341