Lei Jiang

List of Publications by Citations

Source: https://exaly.com/author-pdf/6028416/lei-jiang-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38 papers 16 papers 16 h-index g-index 38 ext. papers 27 g-index 27 g-index 27 g-index 15 L-index

#	Paper	IF	Citations
38	Origins of Palaeozoic oils in the Tarim Basin: Evidence from sulfur isotopes and biomarkers. <i>Chemical Geology,</i> 2009 , 268, 197-210	4.2	124
37	Application of sulfur and carbon isotopes to oillource rock correlation: A case study from the Tazhong area, Tarim Basin, China. <i>Organic Geochemistry</i> , 2015 , 83-84, 140-152	3.1	67
36	Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China. <i>Sedimentology</i> , 2016 , 63, 2130-2157	3.3	54
35	TSR origin of sulfur in Permian and Triassic reservoir bitumen, East Sichuan Basin, China. <i>Organic Geochemistry</i> , 2010 , 41, 871-878	3.1	48
34	Generation of isotopically and compositionally distinct water during thermochemical sulfate reduction (TSR) in carbonate reservoirs: Triassic Feixianguan Formation, Sichuan Basin, China. <i>Geochimica Et Cosmochimica Acta</i> , 2015 , 165, 249-262	5.5	44
33	Petrological and geochemical constraints on porosity difference between Lower Triassic sour- and sweet-gas carbonate reservoirs in the Sichuan Basin. <i>Marine and Petroleum Geology</i> , 2014 , 56, 34-50	4.7	42
32	Thermochemical sulfate reduction and fluid evolution of the Lower Triassic Feixianguan Formation sour gas reservoirs, northeast Sichuan Basin, China. <i>AAPG Bulletin</i> , 2014 , 98, 947-973	2.5	42
31	Diagenesis of an evaporite-related carbonate reservoir in deeply buried Cambrian strata, Tarim Basin, northwest China. <i>AAPG Bulletin</i> , 2018 , 102, 77-102	2.5	29
30	Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality. <i>Geochimica Et Cosmochimica Acta</i> , 2018 , 223, 127-140	5.5	27
29	Petrological and geochemical constraints on diagenesis and deep burial dissolution of the Ordovician carbonate reservoirs in the Tazhong area, Tarim Basin, NW China. <i>Marine and Petroleum Geology</i> , 2016 , 78, 271-290	4.7	26
28	Contrasting diagenetic evolution patterns of platform margin limestones and dolostones in the Lower Triassic Feixianguan Formation, Sichuan Basin, China. <i>Marine and Petroleum Geology</i> , 2018 , 92, 332-351	4.7	26
27	Rare earth element and yttrium (REY) geochemistry in carbonate reservoirs during deep burial diagenesis: Implications for REY mobility during thermochemical sulfate reduction. <i>Chemical Geology</i> , 2015 , 415, 87-101	4.2	24
26	Sr evolution in the Upper Permian and Lower Triassic carbonates, northeast Sichuan basin, China: Constraints from chemistry, isotope and fluid inclusions. <i>Applied Geochemistry</i> , 2012 , 27, 2409-2424	3.5	23
25	Lipids of sulfate-reducing bacteria and sulfur-oxidizing bacteria found in the Dongsheng uranium deposit. <i>Science Bulletin</i> , 2012 , 57, 1311-1319		22
24	Origins and fates of H2S in the Cambrian and Ordovician in Tazhong area: Evidence from sulfur isotopes, fluid inclusions and production data. <i>Marine and Petroleum Geology</i> , 2015 , 67, 408-418	4.7	21
23	Authigenic origin for a massive negative carbon isotope excursion. <i>Geology</i> , 2019 , 47, 115-118	5	17
22	The OrdovicianBilurian tectonic evolution of the northeastern margin of the Tarim block, NW China: Constraints from detrital zircon geochronological records. <i>Journal of Asian Earth Sciences</i> , 2016 , 122, 1-19	2.8	14

(2018-2020)

Dolomitization history and porosity evolution of a giant, deeply buried Ediacaran gas field (Sichuan Basin, China). <i>Precambrian Research</i> , 2020 , 338, 105595	3.9	13
Formation, diagenesis and palaeoenvironmental significance of upper Ediacaran fibrous dolomite cements. <i>Sedimentology</i> , 2020 , 67, 1161-1187	3.3	12
Origin of high H2S concentrations in the Upper Permian Changxing reservoirs of the Northeast Sichuan Basin, China. <i>Marine and Petroleum Geology</i> , 2014 , 57, 233-243	4.7	11
Hydrogeomorphologic architecture of epikarst reservoirs in the Middle-Lower Ordovician, Tazhong Uplift, Tarim Basin, China. <i>Marine and Petroleum Geology</i> , 2018 , 98, 146-161	4.7	8
LA-ICP-MS U-Pb geochronology and clumped isotope constraints on the formation and evolution of an ancient dolomite reservoir: The Middle Permian of northwest Sichuan Basin (SW China). <i>Sedimentary Geology</i> , 2020 , 407, 105728	2.8	8
Anaerobic oxidation of methane by Mn oxides in sulfate-poor environments. <i>Geology</i> ,	5	8
Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin, China. <i>Marine and Petroleum Geology</i> , 2021 , 123, 104752	4.7	8
Seismic sedimentologic study of facies and reservoir in middle Triassic Karamay Formation of the Mahu Sag, Junggar Basin, China. <i>Marine and Petroleum Geology</i> , 2019 , 107, 222-236	4.7	7
Lithology mapping of a mixed siliciclasticdarbonated vaporite system using 3D seismic and well data: Lower Triassic Jialingjiang Formation, Sichuan Basin, southwestern China. <i>Marine and Petroleum Geology</i> , 2018 , 93, 422-436	4.7	7
Multiphase dolomitization of a microbialite-dominated gas reservoir, the middle Triassic Leikoupo Formation, Sichuan Basin, China. <i>Journal of Petroleum Science and Engineering</i> , 2019 , 180, 820-834	4.4	6
The early Paleozoic sedimentaryDectonic evolution of the circum-Mangar areas, Tarim block, NW China: Constraints from integrated detrital records. <i>Tectonophysics</i> , 2016 , 682, 17-34	3.1	6
Diagenetic conditions and geodynamic setting of the middle Permian hydrothermal dolomites from southwest Sichuan Basin, SW China: Insights from in situ UPb carbonate geochronology and isotope geochemistry. <i>Marine and Petroleum Geology</i> , 2021 , 129, 105080	4.7	6
Diagenesis and its impact on a microbially derived carbonate reservoir from the Middle Triassic Leikoupo Formation, Sichuan Basin, China. <i>AAPG Bulletin</i> , 2018 , 102, 2599-2628	2.5	6
The role of thermochemical sulfate reduction in the genesis of high-quality deep marine reservoirs within the central Tarim Basin, western China. <i>Arabian Journal of Geosciences</i> , 2015 , 8, 4443-4456	1.8	5
Characterization of carbonate microfacies and reservoir pore types based on Formation MicroImager logging: A case study from the Ordovician in the Tahe Oilfield, Tarim Basin, China. <i>Interpretation</i> , 2018 , 6, T71-T82	1.4	4
The Ocean redox state evolution and its controls during the Cambrian Series 1 2 : Evidence from Lijiatuo Section, South China. <i>Journal of Earth Science (Wuhan, China)</i> , 2016 , 27, 255-270	2.2	3
Distinguishing microbial from thermochemical sulfate reduction from the upper Ediacaran in South China. <i>Chemical Geology</i> , 2021 , 583, 120482	4.2	3
Lipid Evidence for Oil Depletion by Sulfate-Reducing Bacteria during U Mineralization in the Dongsheng Deposit. <i>Journal of Earth Science (Wuhan, China)</i> , 2018 , 29, 556-563	2.2	2
	Basin, China). Precambrian Research, 2020, 338, 105595 Formation, diagenesis and palaeoenvironmental significance of upper Ediacaran fibrous dolomite cements. Sedimentology, 2020, 67, 1161-1187 Origin of high H2S concentrations in the Upper Permian Changxing reservoirs of the Northeast Sichuan Basin, China. Marine and Petroleum Geology, 2014, 57, 233-243 Hydrogeomorphologic architecture of epikarst reservoirs in the Middle-Lower Ordovician, Tazhong Uplift, Tarim Basin, China. Marine and Petroleum Geology, 2018, 98, 146-161 LA-ICP-MS U-Pb geochronology and clumped isotope constraints on the formation and evolution of an ancient dolomite reservoir: The Middle Permian of northwest Sichuan Basin (SW China). Sedimentary Geology, 2020, 407, 105728 Anaerobic oxidation of methane by Mn oxides in sulfate-poor environments. Geology, Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin, China. Marine and Petroleum Geology, 2021, 123, 104752 Seismic sedimentologic study of facies and reservoir in middle Triassic Karamay Formation of the Mahu Sag, Junggar Basin, China. Marine and Petroleum Geology, 2019, 107, 222-236 Lithology mapping of a mixed siliciclasticBarbonateBvaporite system using 3D seismic and well data: Lower Triassic Jailingjiang Formation, Sichuan Basin, southwestern China. Marine and Petroleum Geology, 2019, 34, 222-436 Multiphase dolomitization of a microbialite-dominated gas reservoir, the middle Triassic Leikoupo Formation, Sichuan Basin, China. Journal of Petroleum Science and Engineering, 2019, 180, 820-834 The early Paleozoic sedimentaryBectonic evolution of the circum-Mangar areas, Tarim block, NW China: Constraints from integrated detrial records. Tectonophysics, 2016, 682, 17-34 Diagenetic conditions and geodynamic setting of the middle Permian hydrothermal dolomites from southwest Sichuan Basin, China. Journal of Petroleum Geology, 2014, 129, 105080 Diagenesis and its impact on a microbially derived carbonate reser	Basin, China). Precambrian Research, 2020, 338, 105595 Formation, diagenesis and palaeoenvironmental significance of upper Ediacaran fibrous dolomite cements. Sedimentalogy, 2020, 67, 1161-1187 Origin of high H2S concentrations in the Upper Permian Changxing reservoirs of the Northeast Sichuan Basin, China. Marine and Petroleum Geology, 2014, 57, 233-243 Hydrogeomorphologic architecture of epikarst reservoirs in the Middle-Lower Ordovician, Tazhong Uplift, Tarin Basin, China. Marine and Petroleum Geology, 2018, 98, 146-161 LA-ICP-MS U-Pb geochronology and clumped isotope constraints on the formation and evolution of an ancient dolomite reservoir. The Middle Permian of northwest Sichuan Basin (SW China). Sedimentary Geology, 2020, 407, 105728 Anaerobic oxidation of methane by Mn oxides in sulfate-poor environments. Geology, Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmian Formation reservoir in central Sichuan Basin, China. Marine and Petroleum Geology, 2021, 123, 104752 Seismic sedimentologic study of facies and reservoir in middle Triassic Karamay Formation of the Mahu Sag. Junggar Basin, China. Marine and Petroleum Geology, 2019, 107, 222-236 Lithology mapping of a mixed siliciclasticdastidarbonateBvaporite system using 3D seismic and well data: Lower Triassic Jialingiliang Formation, Sichuan Basin, southwestern China. Marine and Petroleum Geology, 2019, 107, 222-236 Multiphase dolomitization of a microbialite-dominated gas reservoir, the middle Triassic Leikoupo Formation, Sichuan Basin, China. Journal of Petroleum Science and Engineering, 2019, 180, 820-834 The early Paleozoic sedimentaryBectonic evolution of the circum-Mangar areas, Tarim block, NW China: Constraints from integrated detrited records. Tectonophysics, 2016, 682, 17-34 Diagenetic conditions and geodynamic setting of the middle Permian hydrothermal dolomites from southwest Sichuan Basin, China. Insights from in situ UBb carbonate geochronology and isotope geochemistry. Marine and Petroleum Geology,

Science Letters, 2022, 590, 117565

LEI JIANG

5.3