Xiyang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6028338/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coordination of Atomic Co–Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2018, 140, 10757-10763.	13.7	464
2	Atomicâ€Scale Insights into Surface Lattice Oxygen Activation at the Spinel/Perovskite interface of Co ₃ O ₄ /La _{0.3} Sr _{0.7} CoO ₃ . Angewandte Chemie - International Edition, 2019, 58, 11720-11725.	13.8	140
3	Hollowâ€Structured Metal Oxides as Oxygenâ€Related Catalysts. Advanced Materials, 2019, 31, e1801430.	21.0	99
4	MOF-derived N-doped ZnO carbon skeleton@hierarchical Bi2MoO6 S-scheme heterojunction for photodegradation of SMX: Mechanism, pathways and DFT calculation. Journal of Hazardous Materials, 2022, 426, 128106.	12.4	98
5	Black Phosphorus-Modified Co ₃ O ₄ through Tuning the Electronic Structure for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 17459-17466.	8.0	87
6	Engineering the surface of perovskite La _{0.5} Sr _{0.5} MnO ₃ for catalytic activity of CO oxidation. Chemical Communications, 2014, 50, 9200-9203.	4.1	84
7	Activation of Surface Oxygen Sites in a Cobalt-Based Perovskite Model Catalyst for CO Oxidation. Journal of Physical Chemistry Letters, 2018, 9, 4146-4154.	4.6	67
8	Integrating Catalysis of Methane Decomposition and Electrocatalytic Hydrogen Evolution with Ni/CeO ₂ for Improved Hydrogen Production Efficiency. ChemSusChem, 2019, 12, 1000-1010.	6.8	58
9	Co ₃ O ₄ –CuCoO ₂ Nanomesh: An Interface-Enhanced Substrate that Simultaneously Promotes CO Adsorption and O ₂ Activation in H ₂ Purification. ACS Applied Materials & Interfaces, 2019, 11, 6042-6053.	8.0	55
10	Highly Efficient B-Site Exsolution Assisted by Co Doping in Lanthanum Ferrite toward High-Performance Electrocatalysts for Oxygen Evolution and Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 302-310.	6.7	48
11	Cationâ€Exchangeâ€Induced Metal and Alloy Dualâ€Exsolution in Perovskite Ferrite Oxides Boosting the Performance of Liâ€O ₂ Battery. Angewandte Chemie - International Edition, 2021, 60, 23380-23387.	13.8	47
12	Molten Salt Flux Synthesis, Crystal Facet Design, Characterization, Electronic Structure, and Catalytic Properties of Perovskite Cobaltite. ACS Applied Materials & Interfaces, 2018, 10, 28219-28231.	8.0	46
13	Silver-Intermediated Perovskite La _{0.9} FeO _{3â^îŕ} toward High-Performance Cathode Catalysts for Nonaqueous Lithium–Oxygen Batteries. ACS Catalysis, 2019, 9, 11743-11752.	11.2	46
14	Remarkable Improvement in Photocatalytic Performance for Tannery Wastewater Processing via SnS ₂ Modified with Nâ€Đoped Carbon Quantum Dots: Synthesis, Characterization, and 4â€Nitrophenolâ€Aided Cr(VI) Photoreduction. Small, 2019, 15, e1804515.	10.0	44
15	Defect Engineering, Electronic Structure, and Catalytic Properties of Perovskite Oxide La _{0.5} Sr _{0.5} CoO _{3â^²<i>δ</i>} . Chemistry - A European Journal, 2017, 23, 1093-1100.	3.3	37
16	Modulating Ti <i>t</i> _{2g} Orbital Occupancy in a Cu/TiO ₂ Composite for Selective Photocatalytic CO ₂ Reduction to CO. Angewandte Chemie - International Edition, 2022, 61, .	13.8	35
17	Cation Segregation of A-Site Deficiency Perovskite La _{0.85} FeO _{3â^î^} Nanoparticles toward High-Performance Cathode Catalysts for Rechargeable Li-O ₂ Battery. ACS Applied Materials & Interfaces, 2018, 10, 25465-25472.	8.0	31
18	Optimized Co ²⁺ _(Td) –O–Fe ³⁺ _(Oh) electronic states in a spinel electrocatalyst for highly efficient oxygen evolution reaction performance. Inorganic Chemistry Frontiers, 2019, 6, 3295-3301.	6.0	29

XIYANG WANG

#	Article	IF	CITATIONS
19	Optimizing the surface state of cobalt-iron bimetallic phosphide <i>via</i> regulating phosphorus vacancies. Chemical Communications, 2020, 56, 2602-2605.	4.1	29
20	Switching Optimally Balanced Fe–N Interaction Enables Extremely Stable Energy Storage. Energy and Environmental Materials, 2023, 6, .	12.8	29
21	Mechanistic Origin of Enhanced CO Catalytic Oxidation over Co ₃ O ₄ /LaCoO ₃ at Lower Temperature. ChemCatChem, 2017, 9, 3102-3106.	3.7	28
22	Crystal Growth of Bimetallic Oxides CuMnO ₂ with Tailored Valence States for Optimum Electrochemical Energy Storage. Crystal Growth and Design, 2018, 18, 6107-6116.	3.0	28
23	Surface Reconstruction of a Mullite-Type Catalyst via Selective Dissolution for NO Oxidation. ACS Catalysis, 2021, 11, 14507-14520.	11.2	27
24	Atomicâ€Scale Insights into Surface Lattice Oxygen Activation at the Spinel/Perovskite interface of Co 3 O 4 /La 0.3 Sr 0.7 CoO 3. Angewandte Chemie, 2019, 131, 11846-11851.	2.0	26
25	Jahn–Teller Disproportionation Induced Exfoliation of Unit ell Scale ϵâ€MnO ₂ . Angewandte Chemie - International Edition, 2020, 59, 22659-22666.	13.8	26
26	Composition-controlled synthesis of Ni _{2â^'x} Co _x P nanocrystals as bifunctional catalysts for water splitting. RSC Advances, 2017, 7, 7906-7913.	3.6	24
27	In Situ Growth of Amorphous NiFe Hydroxides on Spinel NiFe ₂ O ₄ via Ultrasonic-Assisted Reduction for an Enhanced Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 17194-17200.	6.7	23
28	Manipulating Surface Termination of Perovskite Manganate for Oxygen Activation. Advanced Functional Materials, 2021, 31, 2006439.	14.9	18
29	Two-dimensional materials for electrochemical CO ₂ reduction: materials, <i>in situ</i> / <i>operando</i> characterizations, and perspective. Nanoscale, 2021, 13, 19712-19739.	5.6	18
30	High-density/efficient surface active sites on modified separators to boost Li-S batteries via atomic Co3+-Se termination. Nano Research, 2022, 15, 7199-7208.	10.4	18
31	Architecture of Biomimetic Water Oxidation Catalyst with Mn ₄ CaO ₅ Clusterlike Structure Unit. ACS Applied Materials & Interfaces, 2018, 10, 37948-37954.	8.0	14
32	A symbiotic hetero-nanocomposite that stabilizes unprecedented CaCl ₂ -type TiO ₂ for enhanced solar-driven hydrogen evolution reaction. Chemical Science, 2019, 10, 8323-8330.	7.4	14
33	High-quality borophene quantum dot realization and their application in a photovoltaic device. Journal of Materials Chemistry A, 2021, 9, 24036-24043.	10.3	14
34	Raw cellulose/polyvinyl alcohol blending separators prepared by phase inversion for high-performance supercapacitors. Nanotechnology, 2021, 32, 095403.	2.6	14
35	Activating Surface Lattice Oxygen of a Cu/Zn _{1<i>–x</i>} Cu _{<i>x</i>} O Catalyst through Interface Interactions for CO Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 9882-9890.	8.0	13
36	Fluorine induced surface reconstruction of perovskite ferrite oxide as cathode catalyst for prolong-life Li-O2 battery. Chemical Engineering Journal, 2022, 448, 137684.	12.7	13

XIYANG WANG

#	Article	IF	CITATIONS
37	Cationâ€Exchangeâ€Induced Metal and Alloy Dualâ€Exsolution in Perovskite Ferrite Oxides Boosting the Performance of Liâ€O ₂ Battery. Angewandte Chemie, 2021, 133, 23568-23575.	2.0	11
38	Electron transfer in Cu/Cu2O generated by disproportionation promoting efficient CO2 photoreduction. Nano Research, 0, , .	10.4	9
39	Synergistic Effects of a CeO ₂ /SmMn ₂ O ₅ –H Diesel Oxidation Catalyst Induced by Acid-Selective Dissolution Drive the Catalytic Oxidation Reaction. ACS Applied Materials & Interfaces, 2022, 14, 2860-2870.	8.0	8
40	The interplay between selective etching induced cation defects and active oxygen species for volatile organic compounds degradation. Journal of Colloid and Interface Science, 2022, 625, 363-372.	9.4	8
41	Engineering surface segregation of perovskite oxide through wet exsolution for CO catalytic oxidation. Journal of Hazardous Materials, 2022, 436, 129110.	12.4	7
42	Role of double interfaces in inspiring energy storage devices in CC@Ni(OH)Cl@NiO flexible electrodes. Materials Chemistry Frontiers, 2020, 4, 231-242.	5.9	5
43	Jahn–Teller Disproportionation Induced Exfoliation of Unit ell Scale ϵâ€MnO 2. Angewandte Chemie, 2020, 132, 22848-22855.	2.0	4
44	Cation…Anionâ€Based Physicochemical Mechanisms for Anodically oloring Electrochromic Nickel Oxide Thin Films. ChemElectroChem, 0, , .	3.4	1
45	Modulating Ti <i>t</i> _{2g} Orbital Occupancy in a Cu/TiO ₂ Composite for Selective Photocatalytic CO ₂ Reduction to CO. Angewandte Chemie, 0, , .	2.0	1