
Vesna Alar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6028287/publications.pdf Version: 2024-02-01

VESNA ALAD

#	Article	IF	CITATIONS
1	Synergistic inhibition of carbon steel corrosion in seawater by cerium chloride and sodium gluconate. Corrosion Science, 2015, 98, 88-97.	6.6	73
2	Experimental Evaluation of Polyester and Epoxy–Polyester Powder Coatings in Aggressive Media. Coatings, 2018, 8, 98.	2.6	18
3	Electrochemical Corrosion Behavior of Near-Nano and Nanostructured WC-Co Cemented Carbides. Metals, 2017, 7, 69.	2.3	14
4	A significant improvement in material of foam. Journal of Alloys and Compounds, 2013, 573, 128-132.	5.5	10
5	Development of Models for Prediction of Corrosion and Pitting Potential on AISI 304 Stainless Steel in Different Environmental Conditions. International Journal of Electrochemical Science, 2016, 11, 7674-7689.	1.3	10
6	The effect of temperature on corrosion behavior of AA5083 in brackish water and seawater. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 1817-1825.	1.5	8
7	Effect of the cerium (III) chloride heptahydrate on the corrosion inhibition of aluminum alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 125-147.	1.5	8
8	Electrochemical Behaviour of PACVD TiN-Coated CoCrMo Medical Alloy. Metals, 2017, 7, 231.	2.3	7
9	A Comparative Study of Green Inhibitors for Galvanized Steel in Aqueous Solutions. Metals, 2020, 10, 448.	2.3	7
10	The effect of CeCl 3 inhibitor on the localized corrosion of stainless steel in chloride solutions. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 1273-1287.	1.5	6
11	Effect of steel substrate on the corrosion properties of a gradient multilayer TiN/TiCN coating deposited by the PACVD process. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 307-318.	1.5	5
12	Phosphating Modification with Metal lons of Carbon Steel Surface to Improve the Influence of Anticorrosion Properties. Technologies, 2022, 10, 3.	5.1	2
13	Crevice corrosion resistance of high alloyed materials in 3.5 % NaCl solution. International Journal of Materials Research, 2014, 105, 603-606.	0.3	1
14	Influence of phosphate layer on adhesion properties between a steel surface and an organic coating. Rudarsko Geolosko Naftni Zbornik, 2022, 37, 11-17.	0.5	1
15	Properties of aluminium coatings produced using manual and robotized flame spraying processes. International Journal of Materials Research, 2014, 105, 215-218.	0.3	Ο