Chiara Bisio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6028265/publications.pdf Version: 2024-02-01

CHIADA RISIO

#	Article	IF	CITATIONS
1	Quantification of BrÃ,nsted Acid Sites in Microporous Catalysts by a Combined FTIR and NH ₃ -TPD Study. Journal of Physical Chemistry C, 2008, 112, 7193-7200.	1.5	177
2	Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews, 2018, 47, 5684-5739.	18.7	123
3	Physicochemical Characterization and Surface Acid Properties of Mesoporous [Al]-SBA-15 Obtained by Direct Synthesis. Langmuir, 2010, 26, 5791-5800.	1.6	105
4	Niobium(V) Saponite Clay for the Catalytic Oxidative Abatement of Chemical Warfare Agents. Angewandte Chemie - International Edition, 2014, 53, 10095-10098.	7.2	83
5	Understanding physico–chemical properties of saponite synthetic clays. Microporous and Mesoporous Materials, 2008, 107, 90-101.	2.2	80
6	Ti(IV) Catalytic Centers Grafted on Different Siliceous Materials:  Spectroscopic and Catalytic Study. Journal of Physical Chemistry C, 2007, 111, 5083-5089.	1.5	64
7	Aluminum Magadiite:  an Acid Solid Layered Material. Chemistry of Materials, 2007, 19, 4300-4315.	3.2	60
8	Niobium–silica catalysts for the selective epoxidation of cyclic alkenes: the generation of the active site by grafting niobocene dichloride. Physical Chemistry Chemical Physics, 2013, 15, 13354.	1.3	59
9	On the Intercalation of the Iodine–Iodide Couple on Layered Double Hydroxides with Different Particle Sizes. Inorganic Chemistry, 2012, 51, 2560-2568.	1.9	52
10	On the hydrothermal stability of MCM-41 mesoporous silica nanoparticles and the preparation of luminescent materials. Journal of Materials Chemistry, 2010, 20, 5504.	6.7	49
11	Titanosilsesquioxanes Embedded in Synthetic Clay as a Hybrid Material for Polymer Science. Angewandte Chemie - International Edition, 2009, 48, 6059-6061.	7.2	47
12	Titanosilsesquioxane Anchored on Mesoporous Silicas: A Novel Approach for the Preparation of Heterogeneous Catalysts for Selective Oxidations. Chemistry - A European Journal, 2008, 14, 8098-8101.	1.7	44
13	Epoxidation with hydrogen peroxide of unsaturated fatty acid methyl esters over Nb(V)â€silica catalysts. European Journal of Lipid Science and Technology, 2013, 115, 86-93.	1.0	43
14	Preparation of luminescent ZnO nanoparticles modified with aminopropyltriethoxy silane for optoelectronic applications. New Journal of Chemistry, 2013, 37, 2103.	1.4	43
15	Rational design of single-site heterogeneous catalysts: towards high chemo-, regio- and stereoselectivity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 1904-1926.	1.0	40
16	Nanosized inorganic metal oxides as heterogeneous catalysts for the degradation of chemical warfare agents. Catalysis Today, 2016, 277, 192-199.	2.2	39
17	An overview of the recent synthesis and functionalization methods of saponite clay. New Journal of Chemistry, 2020, 44, 9969-9980.	1.4	37
18	Grafted non-ordered niobium-silica materials: Versatile catalysts for the selective epoxidation of various unsaturated fine chemicals. Catalysis Today, 2014, 235, 49-57.	2.2	36

#	Article	IF	CITATIONS
19	On the Acidity of Saponite Materials:  A Combined HRTEM, FTIR, and Solid-State NMR Study. Langmuir, 2008, 24, 2808-2819.	1.6	35
20	FT-IR Evidence of Two Distinct Protonic Sites in BEA Zeolite: Consequences on Cationic Exchange and on Acido-Basic Properties in the Presence of Cesium. Journal of Physical Chemistry C, 2008, 112, 10520-10530.	1.5	34
21	Enhancing the open circuit voltage of dye sensitized solar cells by surface engineering of silica particles in a gel electrolyte. Journal of Materials Chemistry A, 2013, 1, 10142.	5.2	33
22	The effect of synthesis gel dilution on the physico-chemical properties of acid saponite clays. Microporous and Mesoporous Materials, 2012, 162, 159-167.	2.2	32
23	Incorporation of a Semiconductive Polymer into Mesoporous SBA-15 Platelets: Toward New Luminescent Hybrid Materials. Chemistry of Materials, 2011, 23, 2803-2809.	3.2	31
24	One-Pot Synthesis and Physicochemical Properties of an Organo-Modified Saponite Clay. Langmuir, 2011, 27, 7250-7257.	1.6	30
25	Surface acidity of novel mesostructured silicas with framework aluminum obtained by SBA-16 related synthesis. Microporous and Mesoporous Materials, 2008, 111, 632-635.	2.2	27
26	The interactions of methyl tert-butyl ether on high silica zeolites: a combined experimental and computational study. Physical Chemistry Chemical Physics, 2013, 15, 13275.	1.3	27
27	NO and CO Adsorption on Over-Exchanged Cu-MCM-22:Â A FTIR Study. Langmuir, 2002, 18, 6875-6880.	1.6	26
28	The Role of Silanols in the Interactions between Methyl <i>tert</i> Butyl Ether and High-Silica Faujasite Y: An Infrared Spectroscopy and Computational Model Study. Journal of Physical Chemistry C, 2012, 116, 6943-6952.	1.5	26
29	A multi-technique approach to disclose the reaction mechanism of dimethyl carbonate synthesis over amino-modified SBA-15 catalysts. Applied Catalysis B: Environmental, 2017, 211, 323-336.	10.8	26
30	A novel stable and efficient light-emitting solid based on saponite and luminescent POSS. Journal of Materials Chemistry, 2012, 22, 25254.	6.7	25
31	Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes. Applied Catalysis A: General, 2019, 581, 133-142.	2.2	25
32	Identification of cationic and oxidic caesium species in basic Cs-overloaded BEA zeolites. Microporous and Mesoporous Materials, 2006, 90, 175-187.	2.2	24
33	An efficient ring opening reaction of methyl epoxystearate promoted by synthetic acid saponite clays. Green Chemistry, 2009, 11, 1173.	4.6	24
34	Size effect of synthetic saponite-clay in quasi-solid electrolyte for dye-sensititized solar cells. Solar Energy Materials and Solar Cells, 2013, 117, 9-14.	3.0	24
35	Toward quasi-solid state Dye-sensitized Solar Cells: Effect of γ-Al 2 O 3 nanoparticle dispersion into liquid electrolyte. Solar Energy, 2015, 111, 125-134.	2.9	24
36	The stability of niobium-silica catalysts in repeated liquid-phase epoxidation tests: A comparative evaluation of in-framework and grafted mixed oxides. Inorganica Chimica Acta, 2015, 431, 190-196.	1.2	23

#	Article	IF	CITATIONS
37	Influence of water on the retention of methyl tertiary-butyl ether by high silica ZSM-5 and Y zeolites: a multidisciplinary study on the adsorption from liquid and gas phase. RSC Advances, 2015, 5, 86997-87006.	1.7	22
38	CO ₂ adsorption on different organo-modified SBA-15 silicas: a multidisciplinary study on the effects of basic surface groups. Physical Chemistry Chemical Physics, 2017, 19, 14114-14128.	1.3	22
39	Ti-POSS covalently immobilized onto mesoporous silica: A model for active sites in heterogeneous catalytic epoxidation. Inorganica Chimica Acta, 2012, 380, 244-251.	1.2	21
40	Promotion of Förster Resonance Energy Transfer in a Saponite Clay Containing Luminescent Polyhedral Oligomeric Silsesquioxane and Rhodamine Dye. Chemistry - an Asian Journal, 2014, 9, 158-165.	1.7	21
41	Niobium(V) Saponite Clay for the Catalytic Oxidative Abatement of Chemical Warfare Agents. Angewandte Chemie, 2014, 126, 10259-10262.	1.6	21
42	An efficient epoxidation of terminal aliphatic alkenes over heterogeneous catalysts: when solvent matters. Catalysis Science and Technology, 2016, 6, 3832-3839.	2.1	21
43	Hyper-Cross-Linked Polymers for the Capture of Aromatic Volatile Compounds. ACS Applied Polymer Materials, 2020, 2, 647-658.	2.0	21
44	On the Physico-Chemical Properties of ZnO Nanosheets Modified with Luminescent CdTe Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 25257-25265.	1.5	19
45	Niobium phosphates as bifunctional catalysts for the conversion of biomass-derived monosaccharides. Applied Catalysis A: General, 2021, 617, 118099.	2.2	18
46	Nonâ€Porous versus Mesoporous Siliceous Materials for CO ₂ Capture. ChemistryOpen, 2019, 8, 719-727.	0.9	17
47	Vanadium oxide intercalated with polyelectrolytes: Novel layered hybrids with anion exchange properties. Journal of Colloid and Interface Science, 2012, 368, 462-469.	5.0	16
48	Iron-montmorillonite clays as active sorbents for the decontamination of hazardous chemical warfare agents. Dalton Transactions, 2018, 47, 2939-2948.	1.6	16
49	Novel insights on magadiite disaggregation: a multitechnique study on thermal stability. Physical Chemistry Chemical Physics, 2013, 15, 13434.	1.3	15
50	Effect of iodine intercalation in nanosized layered double hydroxides for the preparation of quasi-solid electrolyte in DSSC devices. Solar Energy, 2014, 107, 692-699.	2.9	15
51	Interactions of Toluene and <i>n</i> -Hexane on High Silica Zeolites: An Experimental and Computational Model Study Journal of Physical Chemistry C, 2015, 119, 24875-24886.	1.5	15
52	On the Properties of a Novel V-Containing Saponite Catalyst for Propene Oxidative Dehydrogenation. Catalysis Letters, 2009, 131, 42-48.	1.4	14
53	Layered Assembly of Organic Molecules and Host–Guest Interactions in a CALâ€1 Chabasiteâ€Type Precursor of H‣APOâ€34 Catalysts. Angewandte Chemie - International Edition, 2007, 46, 8895-8897.	7.2	13
54	Structural changes induced by dehydration in the crystalline layered silicate Na-RUB-18: a computational/experimental combined study. Journal of Materials Chemistry, 2009, 19, 2610.	6.7	13

#	Article	IF	CITATIONS
55	One-pot synthesis of mesoporous [Al]-SBA-16 and acidity characterization by CO adsorption. Microporous and Mesoporous Materials, 2011, 145, 124-130.	2.2	13
56	The influence of particle size of amino-functionalized MCM-41 silicas on CO ₂ adsorption. Physical Chemistry Chemical Physics, 2017, 19, 29449-29460.	1.3	13
57	Synthetic saponite clays as promising solids for lanthanide ion recovery. New Journal of Chemistry, 2020, 44, 10033-10041.	1.4	13
58	Nanocomposite catalytic materials: synthesis, characterisation and reactivity of Pt/Cs–BEA zeolites. Inorganica Chimica Acta, 2003, 349, 227-238.	1.2	12
59	Organo-modified ZnO nanoparticles: tuning of the optical properties for PLED device fabrication. New Journal of Chemistry, 2014, 38, 6205-6211.	1.4	12
60	A novel electroluminescent PPV copolymer and silsesquioxane nanocomposite film for the preparation of efficient PLED devices. Nanotechnology, 2012, 23, 435702.	1.3	11
61	Switching Selectivity in the Hydrogen Transfer Reduction of Furfural. ChemistrySelect, 2018, 3, 8344-8348.	0.7	11
62	Novel light-emitting clays with structural Tb ³⁺ and Eu ³⁺ for chromate anion detection. RSC Advances, 2020, 10, 29765-29771.	1.7	11
63	On the Adsorption of Gaseous Mixtures of Hydrocarbons on High Silica Zeolites. Journal of Physical Chemistry C, 2017, 121, 6081-6089.	1.5	10
64	Synthesis of Novel Luminescent Double-Decker Silsesquioxanes Based on Partially Condensed TetraSilanolPhenyl POSS and Tb3+/Eu3+ Lanthanide Ions. Processes, 2022, 10, 758.	1.3	10
65	Organic–Inorganic Hybrid Saponites Obtained by Intercalation of Titano‧ilsesquioxane. Chemistry - an Asian Journal, 2011, 6, 914-921.	1.7	9
66	Physico-chemical Properties, Biological and Environmental Impact of Nb-saponites Catalysts for the Oxidative Degradation of Chemical Warfare Agents. ChemistrySelect, 2017, 2, 1812-1819.	0.7	9
67	Novel paramagnetic clays obtained through intercalation of Gd ³⁺ -complexes. Dalton Transactions, 2018, 47, 7896-7904.	1.6	9
68	A Luminescent Polysilsesquioxane Obtained by Selfâ€Condensation of Anionic Polyhedral Oligomeric Silsequioxanes (POSS) and Europium(III) Ions. ChemPlusChem, 2020, 85, 176-182.	1.3	9
69	Acid/Vanadiumâ€Containing Saponite for the Conversion of Propene into Coke: Potential Flameâ€Retardant Filler for Nanocomposite Materials. Chemistry - an Asian Journal, 2012, 7, 2394-2402.	1.7	8
70	Gelation of solvent-free electrolyte using siliceous materials with different size and porosity for applications in dye sensitized solar cells. Solar Energy, 2016, 124, 101-113.	2.9	8
71	More Efficient Prussian Blue Nanoparticles for an Improved Caesium Decontamination from Aqueous Solutions and Biological Fluids. Molecules, 2020, 25, 3447.	1.7	8
72	Synthetic Saponite Clays as Additives for Reducing Aging Effects in PIM1 Membranes. ACS Applied Polymer Materials, 2020, 2, 3481-3490.	2.0	8

#	Article	IF	CITATIONS
73	Hyper Cross-Linked Polymers as Additives for Preventing Aging of PIM-1 Membranes. Membranes, 2021, 11, 463.	1.4	8
74	Interface Between Alkylammonium Ions and Layered Aluminophosphates Materials: A Combined Theoretical and Experimental Study. Chemistry of Materials, 2008, 20, 4980-4985.	3.2	7
75	On the organic/inorganic interface between mesoporous SBA-16 silica and its structural directing polymer: a combined FT-IR and solid state NMR study. RSC Advances, 2012, 2, 1153-1160.	1.7	7
76	Recent developments in intercalation compounds: chemistry and applications. Dalton Transactions, 2018, 47, 2838-2840.	1.6	7
77	Combination of solid-state NMR and ¹ H NMR relaxometry for the study of intercalated saponite clays with the macrocyclic derivatives of Gd(<scp>iii</scp>) and Y(<scp>iii</scp>). Dalton Transactions, 2020, 49, 6566-6571.	1.6	7
78	Experimental Determination of the Molar Absorption Coefficient of <i>n</i> â€Hexane Adsorbed on Highâ€Silica Zeolites. ChemPhysChem, 2017, 18, 2374-2380.	1.0	6
79	On the correlation between Raman spectra and structural properties of activated carbons derived by hyper-crosslinked polymers. Research on Chemical Intermediates, 2021, 47, 419-431.	1.3	6
80	Bifunctional Europium(III) and Niobium(V) ontaining Saponite Clays for the Simultaneous Optical Detection and Catalytic Oxidative Abatement of Blister Chemical Warfare Agents. Chemistry - A European Journal, 2021, 27, 4723-4730.	1.7	6
81	Surface and structural characterization of Cu-exchanged hydroxyapatites and their application in H2O2 electrocatalytic reduction. Applied Surface Science, 2022, 595, 153495.	3.1	6
82	Investigation of co-hosted basic and metal nanoparticles in Pt/Cs-BEA zeolites. Catalysis Today, 2007, 124, 36-42.	2.2	5
83	Dispersion and states of platinum ions in BEA-zeolite pores: effect of the framework basicity. Research on Chemical Intermediates, 2008, 34, 565-576.	1.3	5
84	Nanomaterials: biological effects and some aspects of applications in ecology and agriculture. , 2014, ,		5
85	Stabilization of mineral oil hydrocarbons in recycled paper pulp by organo-functionalized mesoporous silicas and evaluation of migration to food. European Food Research and Technology, 2017, 243, 1471-1484.	1.6	5
86	Silica Monolith for the Removal of Pollutants from Gas and Aqueous Phases. Molecules, 2021, 26, 1316.	1.7	5
87	Isomerization and Epimerization of Glucose Catalyzed by Sn-Containing Mesoporous Silica. Industrial & Engineering Chemistry Research, 2021, 60, 12821-12833.	1.8	5
88	The polyelectrolyte-MoO3 hybrids: Bottom up building of a layered anionic exchanger. Materials Research Bulletin, 2013, 48, 3342-3350.	2.7	4
89	Tungsten oxide: a catalyst worth studying for the abatement and decontamination of chemical warfare agents. Global Security: Health, Science and Policy, 2017, 2, 62-75.	1.0	4
90	On the adsorption of toluene on amorphous mesoporous silicas with tunable sorption characteristics. Dalton Transactions, 2019, 48, 11781-11790.	1.6	4

#	Article	IF	CITATIONS
91	Toluene Adsorption by Mesoporous Silicas with Different Textural Properties: A Model Study for VOCs Retention and Water Remediation. Materials, 2020, 13, 2690.	1.3	4
92	Bifunctional Paramagnetic and Luminescent Clays Obtained by Incorporation of Gd ³⁺ and Eu ³⁺ lons in the Saponite Framework. Inorganic Chemistry, 2021, 60, 10749-10756.	1.9	4
93	Silica Particles Derived from Natural Kaolinite for the Removal of Rhodamine B from Polluted Water. Processes, 2022, 10, 964.	1.3	4
94	Enhancement of the Luminescence Properties of Eu (III) Containing Paramagnetic Saponite Clays. Applied Sciences (Switzerland), 2021, 11, 8903.	1.3	3
95	Structured Inorganic Oxide-Based Materials for the Absorption and Destruction of CBRN Agents. NATO Science for Peace and Security Series B: Physics and Biophysics, 2013, , 43-53.	0.2	2
96	Design and Applications of Multifunctional Catalysts Based on Inorganic Oxides. , 2011, , 13-53.		1
97	Application of NMR relaxometry for real-time monitoring of the removal of metal ions from water by synthetic clays. Dalton Transactions, 2022, 51, 4502-4509.	1.6	1
98	On the platinum species of Pt/H-MCM-22 catalyst for methane combustion. Studies in Surface Science and Catalysis, 2008, , 837-840.	1.5	0
99	Estimation of the effi ciency of applying nanocomposites as environmentally safe nanofertilizers to stimulate biometric indices of agricultural crops. Agricultural Science and Practice, 2018, 5, 64-76.	0.8	0