Juan A. Melero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6028159/publications.pdf

Version: 2024-02-01

30070 36028 10,304 160 54 97 citations h-index g-index papers 165 165 165 9911 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups. Chemistry of Materials, 2000, 12, 2448-2459.	6.7	912
2	Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chemistry, 2009, 11, 1285.	9.0	463
3	Advances in the Synthesis and Catalytic Applications of Organosulfonic-Functionalized Mesostructured Materials. Chemical Reviews, 2006, 106, 3790-3812.	47.7	443
4	Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy and Environmental Science, 2012, 5, 7393.	30.8	393
5	Direct syntheses of ordered SBA-15 mesoporous materials containing arenesulfonic acid groups. Journal of Materials Chemistry, 2002, 12, 1664-1670.	6.7	311
6	Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Microporous and Mesoporous Materials, 2000, 39, 135-147.	4.4	263
7	Acidic Mesoporous Silica for the Acetylation of Glycerol:Â Synthesis of Bioadditives to Petrol Fuel. Energy & Energy & E	5.1	246
8	Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media. Journal of the American Chemical Society, 2013, 135, 5246-5249.	13.7	195
9	Acid-catalyzed etherification of bio-glycerol and isobutylene over sulfonic mesostructured silicas. Applied Catalysis A: General, 2008, 346, 44-51.	4.3	178
10	Biodiesel production from crude palm oil using sulfonic acid-modified mesostructured catalysts. Chemical Engineering Journal, 2010, 161, 323-331.	12.7	175
11	Acetalisation of bio-glycerol with acetone to produce solketal over sulfonic mesostructured silicas. Green Chemistry, 2010, 12, 899.	9.0	165
12	Bifunctional SO ₄ /ZrO ₂ catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose. Catalysis Science and Technology, 2014, 4, 333-342.	4.1	153
13	Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst. Applied Catalysis B: Environmental, 2005, 60, 181-190.	20.2	151
14	Supercritical Fluid Extraction of a Nonionic Surfactant Template from SBA-15 Materials and Consequences on the Porous Structure. Langmuir, 2003, 19, 3966-3973.	3.5	146
15	Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals. Catalysis Reviews - Science and Engineering, 2018, 60, 1-70.	12.9	145
16	Oxygenated compounds derived from glycerol for biodiesel formulation: Influence on EN 14214 quality parameters. Fuel, 2010, 89, 2011-2018.	6.4	144
17	Hydrothermally Stable, Conformal, Sulfated Zirconia Monolayer Catalysts for Glucose Conversion to 5-HMF. ACS Catalysis, 2015, 5, 4345-4352.	11.2	137
18	Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater. Water Research, 2009, 43, 4010-4018.	11.3	135

#	Article	IF	Citations
19	Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron. Applied Catalysis B: Environmental, 2013, 136-137, 64-69.	20.2	133
20	Production of Biofuels via the Catalytic Cracking of Mixtures of Crude Vegetable Oils and Nonedible Animal Fats with Vacuum Gas Oil. Energy & Samp; Fuels, 2010, 24, 707-717.	5.1	132
21	Efficient conversion of levulinic acid into alkyl levulinates catalyzed by sulfonic mesostructured silicas. Applied Catalysis A: General, 2013, 466, 116-122.	4.3	132
22	Nanocomposite Fe2O3/SBA-15: An efficient and stable catalyst for the catalytic wet peroxidation of phenolic aqueous solutions. Chemical Engineering Journal, 2007, 131, 245-256.	12.7	126
23	Degradation of phenolic aqueous solutions by high frequency sono-Fenton systems (US–Fe2O3/SBA-15–H2O2). Applied Catalysis B: Environmental, 2009, 90, 380-388.	20.2	121
24	Etherification of biodiesel-derived glycerol with ethanol for fuel formulation over sulfonic modified catalysts. Bioresource Technology, 2012, 103, 142-151.	9.6	119
25	Iron species incorporated over different silica supports for the heterogeneous photo-Fenton oxidation of phenol. Applied Catalysis B: Environmental, 2007, 70, 452-460.	20.2	114
26	Zero valent iron (ZVI) mediated Fenton degradation of industrial wastewater: Treatment performance and characterization of final composites. Chemical Engineering Journal, 2015, 269, 298-305.	12.7	113
27	Integrated heterogeneous sono–photo Fenton processes for the degradation of phenolic aqueous solutions. Ultrasonics Sonochemistry, 2009, 16, 417-424.	8.2	110
28	Aqueous-sensitive reaction sites in sulfonic acid-functionalized mesoporous silicas. Journal of Catalysis, 2008, 254, 205-217.	6.2	109
29	Heterogeneous photo-Fenton oxidation of benzoic acid in water: Effect of operating conditions, reaction by-products and coupling with biological treatment. Applied Catalysis B: Environmental, 2008, 85, 24-32.	20.2	108
30	Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants. Water Research, 2013, 47, 5647-5658.	11.3	103
31	Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process: Multivariate study by factorial design of experiments. Applied Catalysis B: Environmental, 2006, 66, 198-207.	20.2	102
32	Biodiesel Production with Heterogeneous Sulfonic Acid-Functionalized Mesostructured Catalysts. Energy & Energy	5.1	102
33	Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol. Applied Catalysis B: Environmental, 2012, 113-114, 100-106.	20.2	99
34	Conformal sulfated zirconia monolayer catalysts for the one-pot synthesis of ethyl levulinate from glucose. Chemical Communications, 2014, 50, 11742-11745.	4.1	88
35	Treatment of Phenolic Effluents by Catalytic Wet Hydrogen Peroxide Oxidation over Fe2O3/SBA-15 Extruded Catalyst in a Fixed-Bed Reactor. Industrial & Engineering Chemistry Research, 2007, 46, 4396-4405.	3.7	86
36	Comparative life cycle assessment (LCA) study of heterogeneous and homogenous Fenton processes for the treatment of pharmaceutical wastewater. Journal of Cleaner Production, 2016, 124, 21-29.	9.3	85

#	Article	IF	CITATIONS
37	Efficient production of 5-ethoxymethylfurfural from fructose by sulfonic mesostructured silica using DMSO as co-solvent. Catalysis Today, 2017, 279, 305-316.	4.4	84
38	Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol. Water Research, 2005, 39, 1741-1750.	11.3	82
39	Assessment of Fe2O3/SiO2 catalysts for the continuous treatment of phenol aqueous solutions in a fixed bed reactor. Catalysis Today, 2010, 149, 334-340.	4.4	81
40	Zr-SBA-15 acid catalyst: Optimization of the synthesis and reaction conditions for biodiesel production from low-grade oils and fats. Catalysis Today, 2012, 195, 44-53.	4.4	79
41	Catalytic wet peroxide oxidation of phenolic solutions over a LaTi1â^'xCuxO3 perovskite catalyst. Applied Catalysis B: Environmental, 2004, 47, 281-294.	20.2	76
42	One-pot cascade transformation of xylose into γ-valerolactone (GVL) over bifunctional Brønsted–Lewis Zr–Al-beta zeolite. Green Chemistry, 2016, 18, 5777-5781.	9.0	76
43	Toxicity assessment of pharmaceutical compounds on mixed culture from activated sludge using respirometric technique: The role of microbial community structure. Science of the Total Environment, 2018, 630, 809-819.	8.0	70
44	ZrO ₂ -SBA-15 catalysts for the one-pot cascade synthesis of GVL from furfural. Catalysis Science and Technology, 2018, 8, 4485-4493.	4.1	69
45	Zr-SBA-15 as an efficient acid catalyst for FAME production from crude palm oil. Catalysis Today, 2011, 167, 46-55.	4.4	68
46	Wet Peroxide Oxidation of Phenolic Solutions over Different Iron-Containing Zeolitic Materials. Industrial & Engineering Chemistry Research, 2001, 40, 3921-3928.	3.7	64
47	Heterogeneous photo-Fenton treatment for the reduction of pharmaceutical contamination in Madrid rivers and ecotoxicological evaluation by a miniaturized fern spores bioassay. Chemosphere, 2010, 80, 381-388.	8.2	64
48	Zr-SBA-15 Lewis Acid Catalyst: Activity in Meerwein Ponndorf Verley Reduction. Catalysts, 2015, 5, 1911-1927.	3. 5	63
49	Synthesis and catalytic activity of organic–inorganic hybrid Ti-SBA-15 materials. Journal of Materials Chemistry, 2007, 17, 377-385.	6.7	62
50	Friedel Crafts acylation of aromatic compounds over arenesulfonic containing mesostructured SBA-15 materials. Catalysis Communications, 2004, 5, 131-136.	3.3	61
51	Nanocomposite of crystalline Fe2O3 and CuO particles and mesostructured SBA-15 silica as an active catalyst for wet peroxide oxidation processes. Catalysis Communications, 2006, 7, 478-483.	3.3	59
52	Biological removal of pharmaceutical and personal care products by a mixed microbial culture: Sorption, desorption and biodegradation. Biochemical Engineering Journal, 2013, 81, 108-119.	3.6	58
53	Municipal sewage sludge to biodiesel by simultaneous extraction and conversion of lipids. Energy Conversion and Management, 2015, 103, 111-118.	9.2	58
54	Biological removal of pharmaceutical compounds using white-rot fungi with concomitant FAME production of the residual biomass. Journal of Environmental Management, 2016, 180, 228-237.	7.8	58

#	Article	IF	CITATIONS
55	Efficient one-pot production of \hat{I}^3 -valerolactone from xylose over Zr-Al-Beta zeolite: rational optimization of catalyst synthesis and reaction conditions. Green Chemistry, 2017, 19, 5114-5121.	9.0	57
56	Sulfonic Acid-Functionalized Catalysts for the Valorization of Glycerol via Transesterification with Methyl Acetate. Industrial & Engineering Chemistry Research, 2011, 50, 5898-5906.	3.7	56
57	Exploring the effects of ZVI addition on resource recovery in the anaerobic digestion process. Chemical Engineering Journal, 2018, 335, 703-711.	12.7	56
58	Direct synthesis of titanium-substituted mesostructured materials using non-ionic surfactants and titanocene dichloride. Microporous and Mesoporous Materials, 2005, 86, 364-373.	4.4	54
59	Production of biodiesel from waste cooking oil in a continuous packed bed reactor with an agglomerated Zr-SBA-15/bentonite catalyst. Applied Catalysis B: Environmental, 2014, 145, 197-204.	20.2	53
60	Etherification of benzyl alcohols with 1-hexanol over organosulfonic acid mesostructured materials. Journal of Molecular Catalysis A, 2006, 256, 29-36.	4.8	50
61	Techno-economical assessment of coupling Fenton/biological processes for the treatment of a pharmaceutical wastewater. Journal of Environmental Chemical Engineering, 2018, 6, 485-494.	6.7	49
62	Preparation of titanium molecular species supported on mesostructured silica by different grafting methods. Journal of Molecular Catalysis A, 2002, 182-183, 215-225.	4.8	48
63	Rational Optimization of Reaction Conditions for the One-Pot Transformation of Furfural to γ-Valerolactone over Zr–Al-Beta Zeolite: Toward the Efficient Utilization of Biomass. Industrial & Engineering Chemistry Research, 2018, 57, 11592-11599.	3.7	47
64	Crystallization mechanism of Fe-MFI from wetness impregnated Fe2O3–SiO2 amorphous xerogels: Role of iron species in Fenton-like processes. Microporous and Mesoporous Materials, 2004, 74, 11-21.	4.4	45
65	Catalytic upgrading of furfuryl alcohol to bio-products: Catalysts screening and kinetic analysis. Applied Catalysis A: General, 2017, 537, 74-82.	4.3	45
66	Dehydration of Xylose to Furfural in Alcohol Media in the Presence of Solid Acid Catalysts. ChemCatChem, 2016, 8, 2089-2099.	3.7	44
67	Low-grade oils and fats: Effect of several impurities on biodiesel production over sulfonic acid heterogeneous catalysts. Bioresource Technology, 2011, 102, 9571-9578.	9.6	43
68	Synthesis, characterization and catalytic activity of highly dispersed Mo-SBA-15. Applied Catalysis A: General, 2007, 331, 84-94.	4.3	42
69	Fries rearrangement of phenyl acetate over sulfonic modified mesostructured SBA-15 materials. Applied Catalysis A: General, 2005, 289, 143-152.	4.3	41
70	Zrâ€Containing Hybrid Organic–Inorganic Mesoporous Materials: Hydrophobic Acid Catalysts for Biodiesel Production ChemCatChem, 2013, 5, 994-1001.	3.7	40
71	Dehydration of sorbitol to isosorbide in melted phase with propyl-sulfonic functionalized SBA-15: Influence of catalyst hydrophobization. Applied Catalysis A: General, 2017, 531, 151-160.	4.3	40
72	Experimental and modeling study on removal of pharmaceutically active compounds in rotating biological contactors. Journal of Hazardous Materials, 2014, 274, 473-482.	12.4	37

#	Article	IF	Citations
73	Understanding the role of mediators in the efficiency of advanced oxidation processes using white-rot fungi. Chemical Engineering Journal, 2019, 359, 1427-1435.	12.7	37
74	Synthesis of Sn–silicalite from hydrothermal conversion of SiO2–SnO2 xerogels. Microporous and Mesoporous Materials, 2009, 119, 176-185.	4.4	36
75	Treatment of an agrochemical wastewater by integration of heterogeneous catalytic wet hydrogen peroxide oxidation and rotating biological contactors. Chemical Engineering Journal, 2013, 226, 409-415.	12.7	36
76	Xylose Isomerization with Zeolites in a Twoâ€6tep Alcohol–Water Process. ChemSusChem, 2015, 8, 1088-1094.	6.8	36
77	Biological and Bioelectrochemical Systems for Hydrogen Production and Carbon Fixation Using Purple Phototrophic Bacteria. Frontiers in Energy Research, 2018, 6, .	2.3	36
78	Photocatalytic promoted oxidation of phenolic mixtures: An insight into the operating and mechanistic aspects. Water Research, 2007, 41, 4672-4684.	11.3	35
79	Sulfonic acid heterogeneous catalysts for dehydration of C6-monosaccharides to 5-hydroxymethylfurfural in dimethyl sulfoxide. Chinese Journal of Catalysis, 2014, 35, 644-655.	14.0	34
80	From levulinic acid biorefineries to \hat{I}^3 -valerolactone (GVL) using a bi-functional Zr-Al-Beta catalyst. Reaction Chemistry and Engineering, 2019, 4, 1834-1843.	3.7	32
81	Low-cost Fe/SiO 2 catalysts for continuous Fenton processes. Catalysis Today, 2017, 280, 176-183.	4.4	31
82	Up-scale challenges on biopolymer production from waste streams by Purple Phototrophic Bacteria mixed cultures: A critical review. Bioresource Technology, 2021, 327, 124820.	9.6	31
83	Immobilization of active and stable goethite coated-films by a dip-coating process and its application for photo-Fenton systems. Chemical Engineering Journal, 2012, 203, 212-222.	12.7	29
84	Zr-USY zeolite: Efficient catalyst for the transformation of xylose into bio-products. Catalysis Today, 2018, 304, 80-88.	4.4	29
85	Production of Sorbitol via Catalytic Transfer Hydrogenation of Glucose. Applied Sciences (Switzerland), 2020, 10, 1843.	2.5	29
86	Comprehensive characterization of an oily sludge from a petrol refinery: A step forward for its valorization within the circular economy strategy. Journal of Environmental Management, 2021, 285, 112124.	7.8	28
87	On the Sn(II) and Sn(IV) incorporation into the AFI-structured AlPO4-based framework: the first significantly acidic SnAPO-5. Journal of Materials Chemistry, 2009, 19, 6833.	6.7	27
88	Highly Ti-loaded MCM-41: Effect of the metal precursor and loading on the titanium distribution and on the catalytic activity in different oxidation processes. Microporous and Mesoporous Materials, 2010, 132, 112-120.	4.4	27
89	Nanocrystalline ZSM-5: A catalyst with high activity and selectivity for epoxide rearrangement reactions. Journal of Molecular Catalysis A, 2010, 318, 68-74.	4.8	27
90	Biodiesel Production Over Arenesulfonic Acid-Modified Mesostructured Catalysts: Optimization of Reaction Parameters Using Response Surface Methodology. Topics in Catalysis, 2010, 53, 795-804.	2.8	26

#	Article	IF	Citations
91	Continuous production of biodiesel from low grade feedstock in presence of Zr-SBA-15: Catalyst performance and resistance against deactivation. Catalysis Today, 2014, 234, 174-181.	4.4	25
92	Transformation of Glucose into Sorbitol on Raney Nickel Catalysts in the Absence of Molecular Hydrogen: Sugar Disproportionation vs Catalytic Hydrogen Transfer. Topics in Catalysis, 2019, 62, 570-578.	2.8	25
93	Glycerol valorization: conversion to lactic acid by heterogeneous catalysis and separation by ion exchange chromatography. Biofuels, Bioproducts and Biorefining, 2020, 14, 357-370.	3.7	25
94	Snâ€"Al-USY for the valorization of glucose to methyl lactate: switching from hydrolytic to retro-aldol activity by alkaline ion exchange. Green Chemistry, 2019, 21, 5876-5885.	9.0	24
95	Life-cycle sustainability of biomass-derived sorbitol: Proposing technological alternatives for improving the environmental profile of a bio-refinery platform molecule. Journal of Cleaner Production, 2020, 250, 119568.	9.3	24
96	Understanding the role of Al/Zr ratio in Zr-Al-Beta zeolite: Towards the one-pot production of GVL from glucose. Catalysis Today, 2021, 367, 228-238.	4.4	24
97	Stable Continuous Production of γ-Valerolactone from Biomass-Derived Levulinic Acid over Zr–Al-Beta Zeolite Catalyst. Catalysts, 2020, 10, 678.	3.5	23
98	Bifunctional properties of Al-TS-1 synthesized by wetness impregnation of amorphous Al2O3-TiO2-SiO2 solids prepared by the sol-gel method. Catalysis Letters, 1996, 41, 69-78.	2.6	22
99	Novel approach for the treatment of the organic fraction of municipal solid waste: Coupling thermal hydrolysis with anaerobic digestion and photo-fermentation. Science of the Total Environment, 2020, 714, 136845.	8.0	22
100	Influence of preoxidizing treatments on the preparation of ironâ€containing activated carbons for catalytic wet peroxide oxidation of phenol. Journal of Chemical Technology and Biotechnology, 2012, 87, 880-886.	3.2	21
101	Chemical surface modifiedâ€activated carbon cloth for catalytic wet peroxide oxidation of phenol. Journal of Chemical Technology and Biotechnology, 2014, 89, 1182-1188.	3.2	21
102	Acid-catalyzed production of biodiesel over arenesulfonic SBA-15: Insights into the role of water in the reaction network. Renewable Energy, 2015, 75, 425-432.	8.9	21
103	Contamination of N-poor wastewater with emerging pollutants does not affect the performance of purple phototrophic bacteria and the subsequent resource recovery potential. Journal of Hazardous Materials, 2020, 385, 121617.	12.4	21
104	Study on the Ti and Al coincorporation into the MFI zeolitic structure. Journal of Materials Chemistry, 1998, 8, 2269-2276.	6.7	20
105	Direct synthesis of organically modified Ti-SBA-15 materials. Journal of Molecular Catalysis A, 2008, 291, 75-84.	4.8	20
106	Storage stability and corrosion studies of renewable raw materials and petrol mixtures: A key issue for their co-processing in refinery units. Fuel, 2010, 89, 554-562.	6.4	20
107	Resource Recovery Potential From Lignocellulosic Feedstock Upon Lysis With Ionic Liquids. Frontiers in Bioengineering and Biotechnology, 2018, 6, 119.	4.1	20
108	Comparative Life Cycle Assessment of Glucose Production from Maize Starch and Woody Biomass Residues as a Feedstock. Applied Sciences (Switzerland), 2020, 10, 2946.	2.5	19

#	Article	IF	CITATIONS
109	Defective UiO-66(Zr) as an efficient catalyst for the synthesis of bio jet-fuel precursors via aldol condensation of furfural and MIBK. Journal of Catalysis, 2021, 401, 27-39.	6.2	19
110	Liquid phase rearrangement of long straight-chain epoxides over amorphous, mesostructured and zeolitic catalysts. Applied Catalysis A: General, 2004, 269, 137-146.	4.3	18
111	Agglomeration of Ti-SBA-15 with clays for liquid phase olefin epoxidation in a continuous fixed bed reactor. Chemical Engineering Journal, 2008, 139, 631-641.	12.7	18
112	Exploring the inhibition boundaries of mixed cultures of purple phototrophic bacteria for wastewater treatment in anaerobic conditions. Water Research, 2020, 183, 116057.	11.3	18
113	Ru-ZrO2-SBA-15 as efficient and robust catalyst for the aqueous phase hydrogenation of glucose to sorbitol. Molecular Catalysis, 2020, 484, 110802.	2.0	18
114	Advances in biodiesel production. , 2012, , .		18
115	New insights in the deactivation of sulfonic modified SBA-15 catalysts for biodiesel production from low-grade oleaginous feedstock. Applied Catalysis A: General, 2014, 488, 111-118.	4.3	17
116	Maximizing the Accessibility of Active Species in Weakly Acidic Zrâ€SBAâ€15 Materials. ChemCatChem, 2012, 4, 379-386.	3.7	16
117	Mechanism of CIT-6 and VPI-8 Crystallization from Zincosilicate Gels. Chemistry - A European Journal, 2002, 8, 5153-5160.	3.3	15
118	Synthesis and characterisation of (hydroxypropyl)-2-aminomethyl pyridine containing hybrid polymerâ€"silica SBA-15 materials supporting Mo(vi) centres and their use as heterogeneous catalysts for oct-1-ene epoxidation. Journal of Materials Chemistry, 2011, 21, 6725.	6.7	15
119	Food waste valorization by purple phototrophic bacteria and anaerobic digestion after thermal hydrolysis. Biomass and Bioenergy, 2020, 142, 105803.	5.7	15
120	Unraveling PHA production from urban organic waste with purple phototrophic bacteria via organic overload. Renewable and Sustainable Energy Reviews, 2022, 166, 112687.	16.4	15
121	Effect of the solvent in the liquid phase rearrangement of 1,2-epoxyoctane over Al-MCM-41 and Al-TS-1 catalysts. Journal of Molecular Catalysis A, 2004, 222, 167-174.	4.8	14
122	Effect of the Al-MCM-41 properties on the catalytic liquid phase rearrangement of 1,2-epoxyoctane. Applied Catalysis A: General, 2007, 319, 171-180.	4.3	14
123	Wastewater sludges pretreated by different oxidation systems at mild conditions to promote the biogas formation in anaerobic processes. Environmental Science and Pollution Research, 2016, 23, 24393-24401.	5.3	14
124	Isosorbide Production from Sorbitol over Heterogeneous Acid Catalysts: Screening and Kinetic Study. Topics in Catalysis, 2017, 60, 1027-1039.	2.8	14
125	Crystallization mechanism of Al–Ti-beta zeolite synthesized from amorphous wetness impregnated xerogels. Journal of Materials Chemistry, 1999, 9, 2899-2905.	6.7	13
126	Crystallization mechanism of Al-TS-1 synthesised from amorphous wetness-impregnated Al2O3–TiO2–SiO2 xerogels: role of aluminium species. Journal of Materials Chemistry, 2001, 11, 1519-1525.	6.7	13

#	Article	IF	Citations
127	Intensified-Fenton process for the treatment of phenol aqueous solutions. Water Science and Technology, 2015, 71, 359-365.	2.5	13
128	Temperature Effect on Pretreatment of the Activated Carbon Support (Pt/AC and Pd/AC) for Glycerin into Lactic Acid. Industrial & Engineering Chemistry Research, 2020, 59, 14643-14657.	3.7	13
129	Study of highly furfural-containing refinery wastewater streams using a conventional homogeneous Fenton process. Journal of Environmental Chemical Engineering, 2021, 9, 104894.	6.7	13
130	Application of a Fenton process for the pretreatment of an iron-containing oily sludge: A sustainable management for refinery wastes. Journal of Environmental Management, 2022, 304, 114244.	7.8	13
131	Liquid-phase isophorone oxide rearrangement over mesoporous Al-MCM-41 materials. Journal of Catalysis, 2005, 236, 122-128.	6.2	12
132	Treatment of an agrochemical wastewater by combined coagulation and Fenton oxidation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1189-1196.	3.2	12
133	Mo(VI) Complexes Immobilized on SBA-15 as an Efficient Catalyst for 1-Octene Epoxidation. Catalysts, 2017, 7, 215.	3.5	12
134	Sustainable Catalytic Conversion of Biomass for the Production of Biofuels and Bioproducts. Catalysts, 2020, 10, 581.	3.5	12
135	Catalytic wet hydrogen peroxide oxidation of a petrochemical wastewater. Water Science and Technology, 2010, 61, 1829-1836.	2.5	11
136	Integrated sustainable process for polyhydroxyalkanoates production from lignocellulosic waste by purple phototrophic bacteria. GCB Bioenergy, 2021, 13, 862-875.	5.6	11
137	Sulfonic Mesostructured SBA-15 Silicas for the Solvent-Free Production of Bio-Jet Fuel Precursors via Aldol Dimerization of Levulinic Acid. ACS Sustainable Chemistry and Engineering, 2021, 9, 5952-5962.	6.7	11
138	Catalytic wet peroxidation of phenol in a fixed bed reactor. Water Science and Technology, 2007, 55, 75-81.	2.5	9
139	Extrusion of Fe ₂ O ₃ /SBA-15 mesoporous material for application as heterogeneous Fenton-like catalyst. AIMS Environmental Science, 2015, 2, 154-168.	1.4	9
140	Self-condensation of levulinic acid into bio-jet fuel precursors over acid zeolites: Elucidating the role of nature, strength and density of acid sites. Applied Catalysis A: General, 2022, 631, 118480.	4.3	9
141	Synthesis of MTBE from isobutane using a single catalytic system based on titanium-containing ZSM-5 zeolite. Chemical Communications, 1996, , 1145.	4.1	7
142	Simple and efficient treatment of high-strength industrial waste water using commercial zero-valent iron. Chemical Papers, 2016, 70, .	2.2	7
143	Assessment of Voltage Influence in Carbon Dioxide Fixation Process by a Photo-Bioelectrochemical System under Photoheterotrophy. Microorganisms, 2021, 9, 474.	3.6	7
144	Nearly room-temperature crystallisation of Zn-doped AlPO4-based chabazite materials. Studies in Surface Science and Catalysis, 2007, , 499-505.	1.5	6

#	Article	IF	CITATIONS
145	Modeling the integrated heterogeneous catalytic fixed-bed reactor and rotating biological contactor system for the treatment of poorly biodegradable industrial agrochemical wastewater. Journal of Environmental Chemical Engineering, 2016, 4, 2313-2321.	6.7	6
146	6 Conversion of cellulose and hemicellulose into platform molecules: chemical routes. , 2012, , 123-140.		5
147	Alkalinity, and Not the Oxidation State of the Organic Substrate, Is the Key Factor in Domestic Wastewater Treatment by Mixed Cultures of Purple Phototrophic Bacteria. Resources, 2020, 9, 88.	3.5	5
148	Synergistic thermophilic coâ€fermentation of food and lignocellulosic urban waste with steam explosion pretreatment for efficient hydrogen and carboxylic acidÂproduction. Biofuels, Bioproducts and Biorefining, 2022, 16, 499-509.	3.7	5
149	Synthesis of MTBE from Isobutane Using a Single Catalytic System Based on Titanium-Containing ZSM-5:Â Influence of Reaction Parameters. Industrial & Engineering Chemistry Research, 1998, 37, 4215-4221.	3.7	4
150	Tight control of cellulose depolymerization towards glucose in organic electrolyte solutions. Biomass and Bioenergy, 2014, 62, 158-165.	5.7	4
151	Techno-Economic Assessment of Conceptual Design for Gamma-Valerolactone Production over a Bifunctional Zr–Al–Beta Catalyst. Industrial & Engineering Chemistry Research, 2022, 61, 5547-5556.	3.7	4
152	Beta zeolite as an efficient catalyst for the synthesis of diphenolic acid (DPA) from renewable levulinic acid. Catalysis Today, 2022, , .	4.4	4
153	Synthesis of titanium containing periodic mesoporous organosilica. Studies in Surface Science and Catalysis, 2007, , 450-455.	1.5	3
154	Catalytic Wet Peroxide Oxidation Process for the Continuous Treatment of Polluted Effluents on a Pilot Plant Scale. Journal of Advanced Oxidation Technologies, 2008, 11 , .	0.5	3
155	Optimization of H2 Production through Minimization of CO2 Emissions by Mixed Cultures of Purple Phototrophic Bacteria in Aqueous Samples. Water (Switzerland), 2020, 12, 2015.	2.7	3
156	Efficient Treatment of Synthetic Wastewater Contaminated with Emerging Pollutants by Anaerobic Purple Phototrophic Bacteria. Lecture Notes in Civil Engineering, 2017, , 324-330.	0.4	2
157	ZVI Addition in Continuous Anaerobic Digestion Systems Dramatically Decreases P Recovery Potential: Dynamic Modelling. Lecture Notes in Civil Engineering, 2017, , 211-217.	0.4	2
158	Pharmaceutical wastewater degradation: effective and economical treatment using waste-metallic iron shavings. International Journal of Environmental Studies, 2014, 71, 200-208.	1.6	1
159	Inhibition of the metabolism of mixed cultures of purple phototrophic bacteria by typical refinery and petrochemistry wastewater pollutants. Journal of Chemical Technology and Biotechnology, 2021, 96, 1893-1901.	3.2	1
160	Effect of Ultrasound on the Properties of Heterogeneous Catalysts for Sono-Fenton Oxidation Processes. Journal of Advanced Oxidation Technologies, 2008, 11 , .	0.5	0